FLAME: A Framework Exploring Execution
Strategies for Multi-Cycle Operations in CGRA

Jiajun Qin', Cheng Tan?3, Ruihong Yin?,
!The Chinese University of Hong Kong,

4University of Minnesota,

Abstract—Effective mapping of dataflow graphs onto Coarse-
Grained Reconfigurable Arrays necessitates compiler-architecture
co-design, yet existing approaches frequently assume single-cycle
operations despite real-world applications often involving multi-
cycle operations that constrain achievable clock frequencies. To
address this, we propose FLAME, a novel framework support-
ing three execution strategies (exclusive, distributed, inclusive)
specifically designed for multi-cycle operations, with co-designed
compiler and hardware support. Our evaluations demonstrate
that FLAME not only surpasses prior methods in performance
and but also enables flexible exploration of these operations. The
framework achieves average speedups of 2.21x over baseline
CGRA and 1.49x over prior state-of-the-art framework while
highlighting the distinct characteristics of each strategy.

I. INTRODUCTION

Coarse-grained reconfigurable architectures (CGRAs) have
been successfully deployed across multiple high-impact ap-
plication domains [1]-[5]. However, efficient application de-
ployment on CGRAs remains challenging. A major bottleneck
lies in the compiler’s ability to effectively map dataflow graphs
(DFGs) onto the hardware fabric, which involves optimally as-
signing computational nodes to available processing tiles while
adhering to resource, timing, and communication constraints.
In the majority of existing CGRA mapping methods [6]-[12],
DFG nodes are typically modeled as single-cycle operations
mapped to a single tile. Although this assumption simplifies
the mapping process, it does not accurately capture real-world
scenarios, where many operations incur substantially higher
latencies. These delays most often arise in two cases: (1)
complex arithmetic operations, such as division, and (2) fused
operations, such as multiply-accumulate (MAC). Modeling
them as single-cycle operations would introduce an excessively
long critical path, severely constraining the attainable clock
frequency. Hence, multi-cycle modeling and efficient mapping
of such operations are essential to achieve practical timing.
To highlight the importance of multi-cycle operations,
we examine representative kernels across embedded systems
(fir, latnrm, £ft), ML (spmv, conv, relu), and HPC
(histogram, mvt, gemm) domains. By synthesizing Func-
tional Units (FUs) tailored to these kernels, we classify each
operation as either single-cycle or multi-cycle depending on
its ability to satisfy timing constraints. As illustrated in Fig-
ure 1, forcing all operations into single-cycle execution prevents

This work is partially supported by The Research Grants Council of Hong
Kong SAR (No. CUHK 14211824 and No. CUHK14210723).

Tianhua Xia®, Sai Qian Zhang5, Bei Yu!
2Google, 3Arizona State University,

®New York University

Single-Cycle : Multi-Cycle
[ 056 [ 1.0G [5G =21 0.56 =1 1.0G [ 1.5G

100%
75%
50%.
25%

0%

%€’ LT
%6°9%
%EEE
%60
%0°0S
%8°9€
%2 9
%L 9
%Z'YS
%8°85

fir fft dtw
Fig. 1: Proportion of multi-cycle and single-cycle operations at
different frequencies. Numbers indicate frequency in Hz.

lathrm  relu  spmv  conv histogram mvt gemm

nearly half of the kernels from reaching 500 MHz. Achieving
higher target frequencies, such as 1 GHz or 1.5 GHz, further
demands efficient handling of multi-cycle operations according
to their distribution within each kernel.

Existing solutions to this challenge remain narrow in scope
and limited in performance. For example, [13], [14] address
only floating point operations by serializing multi cycle compu-
tations. Other methods [15]-[17] introduce pipeline registers to
meet timing constraints. However, these approaches are either
restricted to specific operation classes or experience perfor-
mance losses due to inefficient resource usage, particularly
when computations are confined to a single tile, which results
in substantial underutilization of the CGRA fabric.

Effectively managing multi-cycle operations while optimiz-
ing resource utilization requires specialized execution strategies
and a unified framework for mapping space exploration. This
demands tight compiler-architecture co-design, significantly
complicating the mapping process. To address this challenge,
we propose FLAME: A Framework expLoring strAtegies for
Multi-cyclE operations in CGRAs. FLAME introduces three
optimized execution strategies, namely exclusive, distributed,
and inclusive, each tailored for different application scenarios.
Our main contributions are summarized as follows:

+ We summarize three general purpose execution strategies
for managing diverse multi cycle operations, with each
strategy optimized for particular application scenarios.

o We propose a novel framework, FLAME, which combines
a compiler toolchain mapping DFGs on a reconfigurable
architecture for efficient execution based on the proposed
strategies. It can additionally determine the optimal exe-
cution strategy within a given application.

o« We demonstrate through comprehensive evaluation that
FLAME delivers significant performance gains, achiev-
ing substantial speedups over existing approaches while
enabling flexible exploration of multi cycle operation
execution strategies.



L P PP PR Exclusive Inclusive Distributed
' // kernel code ! 1 M 1 1 M | 1
1 1 n1 n4?f— n9
! for (int x = 0; x < total; x+) { ! cycle E +. 1 = m+ 1 E .+.
e/ " B U (B o] U B ]
1 int j = x % NJ; 1 the Istcycle of n6's execution | the 3rd cycle of n6 s execution 1 nd executes at tile 0.
1 o % executi = 5 rti H
! if (A[i1[5] < 0) c[il[§] = 0; | the 2nd cycle of nd's execution ||| $2 | the 3rd cycle of nd’s exeeution || _ | . - DFG after transformation
' else CL4I[3] = AL41051; I cycle|s S T [o] L1 s o X
(Y ! o o) o E o p
' oG Sl | 31 |@ 3
. - |3 (19 ||2 8
the 2nd cycle of n6s execution || & 1 ® | sevccuesartite 0and 2. || O
the 3rd cycle of n4's execution 1 - ~ _ -
1
cycle [s | s | =
n+2 (& | o | o
i 5 AN
the 3rd cycle of n6's execution | the Ist cycle of n6's execution | nd executes at tile 0.
_ | the Ist cycle of n4’s execution 1
cycle [= . 1 s »El'g 74 1 s W ﬂ
n+3 |& 1 o 1 o
@ | il @ [ ] & | o
L 1 1
n6 overlaps with n2 at 2nd cycle. n6 executes at tile 2.
_ nd o\‘fﬂv with n6 m]ndcycle.qvv 1 nd executes attile 3. <
cycle |= 2L ! [ne] I SHA
n+4 |& ! a = 1 o =
@ | @ m b D L n11f{n3 I
n4, n6 take 3 cycles. the Ist cycle of n4’s execution 1 the 3rd cycle of n6's execution P nd executes at tile (. s
other nodes take 1 cycle. — V= the 3rd cyele of n#'s execution | f & T 3
n1 mnu n5 @ [}
. (3,
(a) kernel and its DFG cycle |= ] S T o) = 2 ol 8
n+5 | @ .
CHeH ] g V12 1@ uk (c) Distributed DFG for
the Ist cycle of n6’s execution || 8. | | 16 exccutes at tile 0 and 2. atp
the 2nd cycle of n4s execution Xy | Vo L4 distributed strategy

%

(b) DFG maps onto CGRA through exclusive, inclusive and distributed strategy.

Fig. 2: An example of mapping a kernel onto a 2x2 CGRA,

where division (nodes 4 and 6) takes 3 cycles and others are

single-cycle. Exclusive and inclusive execution use the original DFG in (a), while distributed execution uses the modified DFG
in (c). For clarity, nodes like address calculations before load operations are omitted. SPM denotes scratchpad memory.

II. BACKGROUND AND MOTIVATION

A. Conventional CGRA Architecture and Mapping
CGRAs are programmable accelerators consisting of an array,
integrated with host CPUs in either a loosely coupled [13],
[17]-[20] or a tightly coupled [21]-[24] manner. In our design,
we focus on the loosely coupled approach, where the CGRA
operates as an independent accelerator and the CPU is respon-
sible for data movement and instruction dispatch.

A CGRA is typically composed of multiple tiles arranged in
a grid, with each tile containing FUs for performing operations,
register files for temporal data storage, configuration memory,
and on-chip interconnects for communication with other tiles
or memory. The compiler produces the configuration signals
that direct the tiles each cycle to read their configurations and
execute corresponding operations, while also controlling inter-
tile and memory routing. Notably, although each tile includes
multiple FUs, conventional CGRA designs allow only one FU’s
output to be used as the tile’s result per cycle, discarding the
outputs of all other FUs regardless of their computation.

Given an application kernel, the compiler generates its DFG
and maps the DFG nodes to the CGRA tiles for computation
and data routing. The initial interval (II), calculated by the
compiler, represents the number of cycles between the initiation
of sequential loop iterations. For loops with a large number of
iterations, the II heavily influences the overall execution latency.

B. Different Multi-Cycle Execution Strategies

Given the prevalence of multi-cycle operations in applications
shown in Figure 1, a key challenge lies in how to execute these
operations efficiently. Figure 2 presents an example of mapping
a kernel onto a 2x2 CGRA, where Figure 2 (a) depicts the ker-
nel’s source code alongside its compiled DFG, while Figure 2

(b) illustrates the corresponding DFG placement generated by
the compiler. We next summarize three strategies for supporting
multi-cycle execution. These strategies are illustrated here with
the example to provide a comparative overview.

Exclusive - The simplest approach to handling multi-cycle
operations is to allocate a dedicated tile throughout its execu-
tion. However, this method keeps the tile occupied until com-
pletion, leaving other FUs idle and preventing the processing
of subsequent control signals. While this mapping strategy is
simple to realize, its performance is fundamentally constrained
by the latency of multi-cycle operations. As illustrated in
Figure 2, the resulting II is five cycles, indicating that a new
iteration can only begin after five cycles. During cycles n
through n + 2, the remainder operation (n6) occupies Tile 0
exclusively, preventing additional node assignments and leaving
the other FUs within the tile underutilized.

Distributed - Another strategy is to decompose multi-
cycle operations into a sequence of single-cycle sub-operations
within the DFG, enabling their distribution across multiple
tiles. For example, a division that requires three cycles can be
represented as three consecutive single-cycle nodes, as shown
in Figure 2(c). In this case, the approach achieves an II of four,
an improvement over exclusive execution, while the execution
trace in Figure 2(b) illustrates that all tiles remain active in
every cycle. Nonetheless, when applied to already large DFGs,
this expansion can lead to suboptimal mapping results due to
excessive growth in graph complexity which we will discuss
further in Section V-B.

Inclusive - The idle resources in exclusive execution offer

optimization potential. Observing that operations only require
input ports during initialization and output ports upon comple-



tion, an inclusive execution strategy that utilizes intermediate
cycles for parallel computation is possible. When a tile starts
a multi-cycle operation, it sends inputs to the FU and marks
the operation as in-progress, allowing the tile to process subse-
quent control signals in the next cycle. Throughout execution,
additional operations can be performed since input and output
ports remain available. Upon original operation completion, the
tile outputs the result. This approach significantly improves tile
utilization without altering the DFG. As shown in Figure 2(b),
during cycle n+3 while nodes n4 and n6 are ongoing, nodes n8
and n2 are mapped to Tile 0 and Tile 1 respectively, achieving
an II of 4 without exhausting all resources.

Each of the three strategies provides unique advantages for
specific application scenarios; however, unifying them within a
single framework introduces substantial implementation chal-
lenges. Our proposed FLAME framework overcomes these
difficulties by offering integrated and comprehensive support
for all three execution strategies.

C. Related Works

Conventional compilers also address multi-cycle operations
during code generation, primarily through instruction schedul-
ing. However, these techniques are typically applied only at
the compiler level, without explicit consideration of hardware
constraints. In the context of CGRA mapping, systematic
methods for handling multi-cycle operations remain largely
underexplored. Several prior works employ graph transforma-
tion techniques to serialize multi-cycle operations [13], [14],
[25], thereby mitigating some of the associated challenges in a
way that resembles FLAME’s distributed execution strategy.
However, these approaches are limited to floating-point op-
erations. Alternative strategies address latency, for example,
REVAMP [16] hides memory delays through pipelined data
streaming, while FLEX [26] reduces the cost of address calcu-
lations. CGRA-ME2 [17] leverages pipeline optimizations for
floating-point units, and APEX [15] improves frequency via
register insertion in fused operations. However, pipelining is
less effective for spatial-temporal CGRAs, where tile reconfig-
uration and intermittent inputs cause pipeline underutilization.

In contrast to prior work, FLAME extends both distributed
and exclusive strategies to a broader range of applications and
further introduces a novel inclusive strategy that significantly
enhances performance and resource utilization. Moreover, the
framework enables flexible exploration of execution strategies,
allowing the compiler—hardware co-design to automatically
select the most suitable approach.

I1II. FLAME COMPILER

We develop a compiler toolchain built on LLVM [27] to
support comprehensive mapping of multi-cycle operations. As
illustrated in Figure 3, the compiler processes kernel code by
applying loop transformations (Section III-A) and DFG manip-
ulations (Section III-B). In addition, it integrates a specialized
optimization phase for multi-cycle operations (Section III-C),
which evaluates alternative execution strategies and automat-
ically selects the most effective approach in accordance with
user-defined performance objectives.

A. Loop Transformation

The loop transformation stage applies two principal tech-
niques, loop flattening and loop unrolling, that restructure ker-
nels to improve instruction-level efficiency and expose greater
parallelism during execution.

Loop Flattening - For nested loops, flattening converts mul-
tiple loop levels into a single-level loop structure, eliminating
repeated inner loop initialization overhead. This transformation
typically inserting division and remainder operations to decom-
pose the nested loop hierarchy.

Loop Unrolling - Loop unrolling replicates the loop body
to expand the kernel, increasing the size of DFG and enabling
more effective utilization of resources. By exposing additional
concurrent operations, this technique can significantly improve
performance on reconfigurable fabrics.

B. DFG Manipulation
After loop transformations, FLAME compiler proceeds to gen-
erate and refine DFGs during the DFG manipulation phase.

DFG Generation - Given kernel code, we generate its corre-
sponding DFG where each DFG node represents one instruction
in LLVM IR, with control-flow instructions converted to data-
flow through partial prediction [28].

DFG Tuning - In this phase, frequent computation patterns
are fused into single composite nodes, either based on user-
defined specifications or through the compiler’s automatic
detection of common patterns, such as MAC operations.

C. Multi-Cycle Strategy Optimization

FLAME allows users to either explore or specify their preferred
execution strategies. For those targeting a specific objective
such as performance, the framework automatically generates
and evaluates all three strategies and selects the optimal map-
ping based on their outcomes. If a specific strategy is chosen,
the compiler applies only that strategy during mapping. As
shown in Figure 3, our compiler processes the tuned DFG
through cycle-aware optimization, which initializes node prop-
erties and generates a distributed DFG, followed by strategy
generation that maps DFGs onto the CGRA, and finally strategy
selection via hardware simulation and synthesis to evaluate
statistics and determine the optimal approach.

Cycle-Aware Optimization - Following DFG modification,
FLAME configures node properties by assigning execution
latencies to multi-cycle nodes and specifying their pipelining
capabilities, as described in Section IV. These parameters can
be manually provided by users or obtained from post-synthesis
timing analysis. The DFG is then transformed into a distributed
representation, where multi-cycle nodes are broken down into
multiple sub-nodes to support our distributed execution strategy.

Strategy Generation - Given DFGs optimized for multi-
cycle operations, our compiler then maps them onto CGRAs
under various strategies to generate control signals that guide
CGRA execution. Our framework utilizes a heuristic optimiza-
tion algorithm that maps the DFG onto the CGRA’s Modulo
Routing Resource Graph [29]. The algorithm begins with the
theoretical lower bound of 1II, calculated as the maximum value
between the resource constrained minimum II and recurrence
constrained minimum II. It then iteratively increases the II value



(" Loop Flattening  Loop Unrolling

For (int
¥or (int j
L

User
DFG Generation

DFG Tuning

Output: selected strategy and the mapping results
Latency, Area,
Strategy Selector | |~ e
User
! Area-Efficienty,  |<--- 0
Performance, ...

Energy-efficiency,

:for (int x = 8; x < MxN; xu):
Hi=x/M3j %M ... h
\ '

Loop DFG

Transformation

Multi-Cycle Strategy|

Optimization Target Strategy Selection

Strategy Generation
Distributed Mode, Exclusive Mode ; Inclusive Mode

Optimizationg\?

If n4 is pipelinable, we can map

User  Timing  gyiginal DFG
or n2 n3
-~

n2 n3

Cycle-Aware Optimization

cycle
n+1 1

n4 to this tile even whea n4 npt

T finished.

cycle DAl—{]
o
[SPM]

nd starts nd starts n0starts, .- *"

inlusive
cytle

n+2 Ctrl Signal @Tile

]
|
]

cycle !

|

1 DIV_START,

1

]

|

]

|

n+2

n4 at another tile n4 executes

% e

) N+EL
n4 ends .

nd overlaps with n2 DIV_END...

B exlusive / distributed

% Ctrl Signal @Tile 0
ov [/

nd ends

|
]
|
]
|
]
|
cycle i
|
]
|
]
|
]

bd<~—]
L P
nteL [SPMT] | neEL

n4 ends

Fig. 3: Overall compiler toolchain of FLAME. EL denotes execution latency.

until a valid hardware mapping is found, while consistently
working to minimize the final achieved II.

To support different strategies, the FLAME mapping algo-
rithm evaluates whether a DFG node opt can be allocated to
a tile beginning at a specified cycle under a given II. Tile
occupancy is categorized into four states: SO for single-cycle
operations, and SPO, IPO, and EPO denoting the start, inter-
mediate, and end stages of multi-cycle operations, respectively.

In the exclusive execution strategy, the II is configured to
exceed the maximum node latency, with tiles assigned to multi-
cycle operations marked as occupied throughout their duration
to prevent resource conflicts. The distributed strategy follows
a similar logic but involves pre-decomposition of multi-cycle
operations during scheduling. Under the inclusive strategy,
placement restrictions are applied based on operation type:
single-cycle operations cannot be placed on tiles marked with
SO, SPO, or EPO due to port contention, while multi-cycle
operations avoid SO and SPO during their start stages and SO
and EPO during end stages, as they don’t concurrently occupy
both input and output ports. Furthermore, non-pipelined multi-
cycle operations sharing FUs cannot be scheduled on the same
tile during overlapping cycles.

Upon the mapping process, the framework produces the final
II along with tile-specific control signals to coordinate operation
execution. In inclusive execution strategy, these control signals
incorporate additional OPT_START and OPT_END markers
(where OPT identifies particular multi-cycle operations) to
explicitly indicate the initiation and completion points of multi-
cycle operations, as will be elaborated in Section IV.

Strategy Selection - With the control signals for each tile
obtained, we simulate CGRA execution to determine latency
and synthesize the tiles with FUs under different strategies to
evaluate power consumption, area usage, and other metrics. As
shown in Figure 3, these results are fed into our strategy selec-
tor, which automatically selects the optimal configuration based
on the user-specified optimization objectives, then outputs
both the chosen strategy and corresponding mapping results.
Alternatively, if a specific strategy is explicitly chosen instead
of automated exploration, the framework directly produces the
corresponding mapping output.

Cycle
will issue op next cycle output results of
divison

issues DIV_END
signal_counter++

output results of
divison

. CGRA Exclusive Inclusive
PV
Start A0 ] Start
o -1 > b
& ho| (ovee i ] IS oyoe =
O T ﬂ Tssues DIV, issues DIV_START
response | | signal_counter++
-0 DIV STAR E
=+, ! Exec N Exec ——pr—| o (
! Cycle ; O] m—— ;
| waits for DIV issues ADD output results of
1 signal_counter++ addition
! DIV )
1
End End [_ADD |
1 = >
- [ A S i
1
1
1

signal_counter++

Fig. 4: FLAME architecture and its execution process.

IV. FLAME ARCHITECTURE

FLAME's architecture, shown in Figure 4, is based on a general
NxM CGRA prototype loosely coupled to the CPU via an
accelerator interface. Each tile integrates FUs, crossbars, and
configuration memory. The topmost tiles include dedicated
load/store units to access SPM. Tile count, port count per tile,
and crossbar sizes are all fully parameterizable.

To enable exclusive execution, we incorporate logic into tiles
to ensure they maintain their current state during multi-cycle
computations and only fetch subsequent control signals after
finishing previously mapped operations. As shown in Figure 4,
multi-cycle operations produce valid data only upon comple-
tion, prior to which the tile is solely engaged in that operation.
The system automatically increments the signal counter once
finished, allowing tiles to proceed to the next control signal in
the subsequent cycle.

For distributed execution, hardware execution is the same
as the conventional CGRA structure, as all modifications are
managed at the compiler level. This strategy provides the dual
benefit of enabling resource-efficient implementations, as each
split node executes only a portion of the original multi-cycle
computation, allowing tiles to incorporate simplified hardware
components rather than complete functional units. For example,
distributing a 4-cycle operation across four tiles means each
tile only requires the hardware specific to its assigned stage,
significantly reducing overall resource requirements.

For inclusive execution, our architecture also adds control
logic to handle the OPT_START and OPT_END signals. As
illustrated in Figure 4, operations are treated as single-cycle



Application Kernel Description

ResNet Convolution (k1); BatchNorm (k2, k3); ReLU (k4)

Attention

Linear projection and matmul (k1);
Softmax (k2, k3); Mask and normalization (k4)

Gradient computation (k1); Gaussian smoothing (k3)
Gradient squared and product Computation (k2);
Harris response calculation and thresholding (k4);

Harris Corner

TABLE I: Applications used for our evaluation. k1 denotes the
first kernel of the application. Some operations like BatchNorm
requires multiple kernels for their computations.

from the tile’s perspective, which means the tile assumes
each operation completes in one cycle, allowing it to pro-
ceed without stalling ongoing multi-cycle computations and
thereby facilitating overlap between operations. Upon receiving
OPT_START, the tile initiates execution by supplying inputs
to the FU, while OPT_END triggers the final result selection.
Our framework maintains full compatibility across all execution
strategies, differing only in the compiler-generated control
signals: exclusive execution uses signals that cause tiles to
wait for FU completion, whereas inclusive execution utilizes
OPT_START and OPT_END to support overlapped execution.

In inclusive execution, pipelines constitute a special case.
While inclusive execution typically overlaps operations of dif-
ferent types requiring different FUs, pipelined operations of the
same type can still overlap within our framework. This requires
adding pipeline registers to the FU to buffer intermediate results
each cycle, allowing it to accept new inputs before the current
computation finishes. Without these registers, the FU can only
handle one operation at a time. This behavior is user-specified,
with further analysis provided in Section V-D.

V. EXPERIMENTAL EVALUATION
A. Experimental Setup
To assess the proposed framework, we employ benchmarks
spanning multiple domains, including embedded systems, ma-
chine learning, and HPC. For embedded systems, we evaluate
digital signal processing kernels, including finite impulse re-
sponse filters (fir), normalized lattice filters (1atnrm), fast
Fourier transforms (£ft), and dynamic time warping (dtw).
For machine learning workloads, we use sparse matrix—vector
multiplication (spmv), convolution (conv), and rectified linear
unit (relu). HPC benchmarks include histogram computation
(histogram), matrix—vector product with transpose (mvt),
and generalized matrix multiplication (gemm). In addition, we
assess full applications such as ResNet, attention mechanisms,
and Harris corner detection (see Table I for details). To improve
CGRA utilization, all benchmarks are transformed through loop
flattening and unrolling to generate large DFGs.

We implement the 4x4 FLAME CGRA in RTL using syn-
thesizable Verilog generated from Pymtl3 [30] and synthesize
it with Synopsys Design Compiler [31] using a 45 nm TSMC
library for area and power estimation. The FLAME compiler
framework is built on top of the LLVM [27] infrastructures.

B. Effect of Different Strategies
Figure 5 compares three strategies across various kernels.
Through our synthesis of FUs at 1GHz, we identify memory ac-

cesses, multiplications, and divisions as multi-cycle operations.
The results reveal distinct trade-offs for each approach:

The exclusive strategy uses the simplest mapping logic but
suffers significant performance degradation at low unrolling
factors, where multi-cycle operations create critical path bot-
tlenecks and cause severe resource underutilization. With small
DFGs, division operations take at least 9 cycles, blocking
subsequent operations and leading to an II of at least 9.
Increasing the unrolling factor enhances performance as larger
DFGs offer more operations to better utilize available resources.

The distributed strategy demonstrates strong performance
on smaller DFGs by distributing multi-cycle operations across
tiles, as shown in kernels such as conv and hist in Figure 5.
It achieves comparable results to the inclusive strategy at low
unrolling factors with manageable DFG sizes. However, its
efficiency decreases for larger workloads like mvt and gemm,
where DFGs exceeding 180 nodes introduce increased mapping
complexity and compromise performance gains. It should be
noted that even state-of-the-art mapping algorithms for CGRAs
face greater challenges in optimizing larger DFGs, and the
distributed strategy will exacerbate this issue.

Inclusive strategy consistently achieves near-optimal per-
formance across all benchmarks, with an average speedup
of 1.76x and 1.28x over exclusive and distributed strategy.
It maintains high resource utilization without incurring the
scalability limitations of the distributed approach, making it
well-suited for most practical scenarios.

Our evaluation also covers kernels like £fir and latnrm,
which contain relatively few multi-cycle operations (under 20%
of the total) at 1GHz, as shown in Figure 1. In these cases,
the other strategies provide limited improvements over the
exclusive approach, so we excluded these kernels from results.

In summary, each strategy targets different workload needs:
the exclusive strategy offers simplicity and delivers competitive
performance with limited multi-cycle operations; the distributed
strategy suits medium-sized DFGs; the inclusive strategy serves
as a versatile default for complex workloads. The optimal
choice depends on DFG size and operation characteristics,
with the inclusive strategy providing the most favorable for
typical scenarios. Our FLAME framework supports exploring
the optimal strategy based on application requirements.

C. Effect of Frequency

Figure 6a shows the speedup achieved at various operating
frequencies in a setup where division is the only multi-cycle
operation. The results indicate that performance improvements
over exclusive execution scale with frequency, as higher clock
rates raise the cycle count of multi-cycle operations, which
leaves FLAME more space for optimization. Conversely, at
lower frequencies such as 200MHz where divisions complete
in only two cycles, performance gains are constrained and
the inclusive strategy converges toward the exclusive approach
with identical speedups. Notably, even the exclusive strategy
running at higher frequencies can outperform all strategies
operating at lower frequencies, underscoring the importance
of targeting relatively high clock rates. Elevated frequencies
lead to increased cycle counts of multi-stage operations, while



||:| Exclusive [ Distributed [ Inclusive

Original DFG —o— Distributed DFG|

EN 224 o sio | 250 3
84 180 7 24 36 +200 I
& . /. / 3.0\2.29 &
23 1 136 A/ / 0 71 2.0 150 o
N2 00 f Atz i oo 15 1l el gl sl 100 @
AR, ol 0002 g bl Wi e s
€1 / 1 a7 Pls/ [ / a7 50 @
5 " n an pAn Gl / ‘ hor ,I//' I
2 wl'H a4, I A U g,,,_,, 0000 g g 40 Ul g A et B flxl i A MR i AR e
o RN IS W I ok TS g2 ok
&%\/ g{&/ g{&/ /&C“‘/ (e\\&/ \\)/e\\) $Q¢\ 5/96\\1666\\] 0\1/ ‘\sl 04/ X\\%\/X\%\%c_,\/ 6\4‘ @q’&/@{‘/%e&&/«\i:/i&“/ N

Fig. 5: Normalized speedup over exclusive execution (without loop unrolling) and total DFG node counts, with u2 denoting an
unrolling factor of 2 and similarly for others, and hist denoting histogram. The inclusive strategy incorporates pipelining.

[E=3 Exclusive B Distributed =31 Inclusive | [ == Exclusive mmm Distributed =3 Inclusive |

53 23
§ 2 B 2
Q g.
w1 o1

800 600 400 200 3*3 4*4 55 48

Frequency (MHz) CGRA Size
(@ (b

220
215
21.0
€ 0.5

gemm  relu - fit " spmv = mvt k1 k2 k3 k4 k1 k2 k3 k4 k1 k2 k3 k4

Application Kernel ResNet Attention Harris Corner

©

(d)
Fig. 6: Normalized speedup of FLAME. The kernels evaluated
in (a), (b), and (c) are the same as those in Figure 5.

FLAME strategically leverages this characteristic to achieve
optimized performance, demonstrating its capability to support
higher clock frequencies while maintaining strong performance.

D. Effect of Pipelining

Figure 6¢ demonstrates the performance improvement achieved
through the pipelining technique described in Section IV, under
two conditions: the DFG must be sufficiently large to expose
resource bottlenecks that justify pipelining, and numerous oper-
ations must share the same FU. These criteria are met in kernels
with high unrolling factors, where our method yields an average
speedup of 1.30x. While previous works [15], [17] often
employ pipeline registers to manage multi-cycle operations, our
evaluation shows that such registers are necessary only when
the aforementioned conditions are satisfied, and only limited
kernels can benefit from them.

E. Scalability

Our scalability evaluation of FLAME (Figure 6b) reveals
nuanced performance characteristics as CGRA size expands.
Speedup improvements do not scale linearly with array size,
as the 4x8 configuration achieves only a modest 1.4x (<2x)
speedup over the 4x4 design, primarily constrained by current
compiler mapping limitations. This finding suggests that parti-
tioning may be more effective than monolithic scaling up for
larger CGRAs.

FE. Effect of Fusion

To validate the practical effectiveness of FLAME, we eval-
uate three multi-kernel applications that contain numerous
frequent operation patterns suitable for fusion. We compare
FLAME with three baselines employing distinct approaches
for multi-cycle operations—APEX [15], REVAMP [16], and

FU Area (um?)  Power (uW)
Exclusive FU 811 108
Distributed FU 382 59
Inclusive FU 1889 1860
Tile Area (um?)  Power (uW)
Tile with Exclusive FU 57218 22800
Tile with Distributed FU 56808 22700
Tile with Inclusive FU 58225 24500

TABLE II: Power and area consumption of a division FU
under different strategies, along with the tile configured with
corresponding FUs, where the evaluated tile supports all basic
operations like addition and comparison.

Transpire [25]. We reproduce these works and use the same set
of patterns for fair comparisons.

As shown in Figure 6d, FLAME achieves speedups of 1.53x,
1.49x, and 1.60x over Transpire, REVAMP, and APEX,
respectively, across the three applications. This improvement
occurs because fusing multiple operations often produces large
patterns with high latency, which would otherwise impose strict
II constraints. FLAME’s multi-cycle strategies enable aggres-
sive operation fusion by fully utilizing hardware resources even
under long-latency operations. These findings also highlight
that fusion optimization should consider not only DFG patterns
but also hardware compatibility, where our FLAME framework
offers a flexible and comprehensive solution to explore this.

G. Hardware Evaluation

We evaluate the area and power consumption of our multi-
cycle FUs at 1GHz. Table II presents the hardware costs
for distributed, exclusive, and inclusive FUs along with their
corresponding tiles, demonstrating that the distributed approach
significantly reduces hardware costs.

VI. CONCLUSION

This work proposes FLAME, which enables efficient map-
ping of multi-cycle operations on CGRAs via multiple execu-
tion strategies. It leverages compiler-architecture co-design to
unify hardware flexibility and strategy optimization. Evaluation
shows that FLAME systematically explores strategy trade-offs,
facilitating efficient deployment across diverse applications.



(1]

[2

—

[3]

[4

—

(5]

(6]

(71

[8

—_

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki, “Dsagen:
Synthesizing programmable spatial accelerators,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 268-281.

J. Qin, T. Xia, C. Tan, J. Zhang, and S. Q. Zhang, “Picachu: Plug-in
cgra handling upcoming nonlinear operations in 1lms,” in Proceedings
of the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, 2025, pp.
845-861.

B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx adaptive
compute acceleration platform: Versaltm architecture,” in Proceedings of
the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2019, pp. 84-93.

Y. Luo, C. Tan, N. B. Agostini, A. Li, A. Tumeo, N. Dave, and T. Geng,
“Ml-cgra: an integrated compilation framework to enable efficient ma-
chine learning acceleration on cgras,” in 2023 60th ACM/IEEE Design
Automation Conference (DAC). 1EEE, 2023, pp. 1-6.

C. Tan, N. B. Agostini, T. Geng, C. Xie, J. Li, A. Li, K. J. Barker,
and A. Tumeo, “Drips: Dynamic rebalancing of pipelined streaming
applications on cgras,” in 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). 1EEE, 2022, pp. 304-316.
C. Tan, D. Patil, A. Tumeo, G. Weisz, S. Reinhardt, and J. Zhang,
“Vecpac: A vectorizable and precision-aware cgra,” in 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD), 2023, pp.
1-9.

Z. Li, P. Dangi, C. Yin, T. K. Bandara, R. Juneja, C. Tan, Z. Bai, and
T. Mitra, “Enhancing cgra efficiency through aligned compute and com-
munication provisioning,” in Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 1, 2025, pp. 410-425.

D. Wijerathne, Z. Li, A. Pathania, T. Mitra, and L. Thiele, “Himap: Fast
and scalable high-quality mapping on cgra via hierarchical abstraction,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 10, pp. 3290-3303, 2021.

S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-Azumi,
and J. Anderson, “Cgra-me: A unified framework for cgra modelling and
exploration,” in 2017 IEEE 28th international conference on application-
specific systems, architectures and processors (ASAP). 1EEE, 2017, pp.
184-189.

C. Tan, C. Xie, A. Li, K. J. Barker, and A. Tumeo, “Opencgra: An open-
source unified framework for modeling, testing, and evaluating cgras,” in
2020 IEEE 38th International Conference on Computer Design (ICCD).
IEEE, 2020, pp. 381-388.

——, “Aurora: Automated refinement of coarse-grained reconfigurable
accelerators,” in 2021 Design, Automation & Test in Europe Conference
& Exhibition (DATE). 1EEE, 2021, pp. 1388-1393.

C. Tan, M. Jiang, D. Patil, Y. Ou, Z. Li, L. Ju, T. Mitra, H. Park,
A. Tumeo, and J. Zhang, “Iced: An integrated cgra framework enabling
dvfs-aware acceleration,” in 2024 57th IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO). 1EEE, 2024, pp. 1338-1352.

R. Prasad, S. Das, K. J. Martin, and P. Coussy, “Floating point cgra based
ultra-low power dsp accelerator,” Journal of Signal Processing Systems,
vol. 93, no. 10, pp. 1159-1171, 2021.

S. Das, R. Prasad, K. J. Martin, and P. Coussy, “Energy efficient
acceleration of floating point applications onto cgra,” in ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 1EEE, 2020, pp. 1563-1567.

J. Melchert, K. Feng, C. Donovick, R. Daly, R. Sharma, C. Barrett, M. A.
Horowitz, P. Hanrahan, and P. Raina, “Apex: A framework for automated
processing element design space exploration using frequent subgraph
analysis,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3, 2023, pp. 33-45.

T. K. Bandara, D. Wijerathne, T. Mitra, and L.-S. Peh, “Revamp: A
systematic framework for heterogeneous cgra realization,” in Proceedings
of the 27th ACM international conference on architectural support for
programming languages and operating systems, 2022, pp. 918-932.

O. Ragheb, S. Wicklund, M. Walker, R. Beidas, A. Ragab, T. Yu, and
J. Anderson, “Cgra-me 2.0: A research framework for next-generation
cgra architectures and cad,” in 2024 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). 1EEE, 2024,
pp. 642-649.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

[31]

C. Sunny, S. Das, K. J. Martin, and P. Coussy, “Hardware based loop
optimization for cgra architectures,” in International Symposium on
Applied Reconfigurable Computing. Springer, 2021, pp. 65-80.

H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M.
Chaves Filho, “Morphosys: an integrated reconfigurable system for data-
parallel and computation-intensive applications,” IEEE transactions on
computers, vol. 49, no. 5, pp. 465-481, 2000.

S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and
R. R. Taylor, “Piperench: A reconfigurable architecture and compiler,”
Computer, vol. 33, no. 4, pp. 70-77, 2000.

A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings,
“A reconfigurable arithmetic array for multimedia applications,” in Pro-
ceedings of the 1999 ACM/SIGDA seventh international symposium on
Field programmable gate arrays, 1999, pp. 135-143.

Mirsky and DeHon, “Matrix: a reconfigurable computing architecture
with configurable instruction distribution and deployable resources,” in
1996 Proceedings IEEE Symposium on FPGAs for Custom Computing
Machines. 1EEE, 1996, pp. 157-166.

V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality and
parallelism specialization for energy-efficient computing,” IEEE Micro,
vol. 32, no. 5, pp. 38-51, 2012.

J. D. Souza, L. Carro, M. B. Rutzig, and A. C. S. Beck, “A reconfigurable
heterogeneous multicore with a homogeneous isa,” in 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE). 1EEE,
2016, pp. 1598-1603.

R. Prasad, S. Das, K. J. Martin, G. Tagliavini, P. Coussy, L. Benini,
and D. Rossi, “Transpire: An energy-efficient transprecision floating-
point programmable architecture,” in 2020 Design, Automation & Test
in Europe Conference & Exhibition (DATE). 1EEE, 2020, pp. 1067—
1072.

T. K. Bandara, D. Wu, R. Juneja, D. Wijerathne, T. Mitra, and L.-S. Peh,
“Flex: Introducing flexible execution on cgra with spatio-temporal vector
dataflow,” in 2023 IEEE/ACM International Conference on Computer
Aided Design (ICCAD). IEEE, 2023, pp. 1-9.

C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong
program analysis & transformation,” in International Symposium on Code
Generation and Optimization, 2004. CGO 2004., 2004, pp. 75-86.

M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Branch-aware loop
mapping on cgras,” in 2014 51st ACM/EDAC/IEEE Design Automation
Conference (DAC), 2014, pp. 1-6.

B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “Exploit-
ing loop-level parallelism on coarse-grained reconfigurable architectures
using modulo scheduling,” in 2003 Design, Automation and Test in
Europe Conference and Exhibition, 2003, pp. 296-301.

S. Jiang, P. Pan, Y. Ou, and C. Batten, “Pymtl3: A python framework for
open-source hardware modeling, generation, simulation, and verification,”
IEEE Micro, vol. 40, no. 4, pp. 58-66, 2020.

P. Kurup and T. Abbasi, Logic synthesis using Synopsys®.
Science & Business Media, 1997.

Springer



