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Abstract
Restoring power distribution networks after dis-
ruptions demands rapid, reliable coordination
across repair crews, mobile power sources, and
switching actions under strict constraints. Clas-
sical optimization yields high-quality plans but
can be slow, while reinforcement learning of-
ten requires feeder-specific training and care-
ful reward shaping. We recast restoration as
language-conditioned planning: a large lan-
guage model generates high-level restoration
plans over a compact pre-validated catalogue
of feasible actions. This constrained generation
design makes decisions reliably, scalably, and
interpretably, and allows for real-time human-
in-the-loop decision-making while requiring
no topology-specific setup or retraining. Our
method achieves near-mixed-integer-linear pro-
gramming performance on the IEEE 13-node
standard power distribution feeder and outper-
forms a time-capped MILP solver on the IEEE
33-node standard feeder by around 13%, while
using less than 1% of its wall-clock runtime.

1 Introduction

The timely restoration of power distribution net-
works after extreme weather events and natural
disasters is critical to the energy resilience of mod-
ern societies (Shen et al., 2020). It is a complex
sequential decision-making problem, requiring op-
timally coordinated actions including dispatching
repair crews (RCs), routing and connecting mobile
power sources (MPSs), and executing radiality-
safe switch operations under tight resource and
operational constraints. These actions determine
which power loads are energized at each time step,
and thus directly impact the scale and duration of
power outages after disastrous events. In practice,
multiple factors complicate the decision-making,
e.g., RCs travel and repair over multiple time steps,
MPSs move and supply limited power to isolated is-
lands of the network, and only loop-free switch clo-
sures are legal; restoration is therefore a temporally

coupled, constraint-laden combinatorial decision-
making problem rather than a single-shot topology
tweak (benchmarked on standard IEEE 13/33-node
feeders) (Kersting, 2001; Baran and Wu, 1989a).

A large body of work frames restoration as
mixed integer linear programming (MILP) opti-
mization that jointly schedules repair-crew rout-
ing/repair, MPS placement/dispatch, and feeder
reconfiguration under radiality and power limits
(time-indexed over a horizon) (Lei, 2019; Lei et al.,
2019; Ye et al., 2021; Ding et al., 2020; Yang et al.,
2023; Hom, 2022; Wan, 2024; Kim and Dvorkin,
2019; Nazemi et al., 2021; Yao et al., 2020). MILP
is the mainstream solution for power distribution
system restoration because when computation com-
pletes without time constraints, the solution is guar-
anteed to be globally optimal (ignoring small ap-
proximation errors from the linearized power flow
representation commonly used in distribution net-
works where voltages remain close to nominal val-
ues). This makes time-relaxed MILP an oracle
reference for solution quality. However, achiev-
ing such optimality comes at the cost of very high
computational burden, and no universal fast solver
currently exists for problems of this complexity.
Although MILP-based approaches provide theoret-
ically optimal decisions, they remain challenging
to deploy directly in real-world operational envi-
ronments where utility field engineers must make
rapid decisions based on experience. In our experi-
ments, we use the MILP formulation of Lei (2019)
as a reference on small systems. For larger sys-
tems we implement time-capped MILP (Ding et al.,
2020) with up to one hour of computation time.
While the 5-minute restoration timestep requires
decisions within that window, we allow MILP one
hour per decision, which is far beyond practical
limits but can be viewed as close to an idealized
solution.

To avoid repeated large-scale optimization prob-
lem solutions, recent work casts restoration as



a cooperative partially observable Markov game
and applies centralized-training, decentralized-
execution (CTDE) multi-agent reinforcement learn-
ing (MARL). Popular choices include proximal
policy optimization (PPO) based algorithm with a
centralized critic for coordination (Sch, 2017; Yu2,
2021), and value-factorization methods such as
Value Decomposition Networks and Q-Mixing Net-
works that decompose the joint action-value while
enabling decentralized execution (Sun, 2018; Ras,
2018). Applied to restoration problems, CTDE
agents coordinate RC/MPS actions under action
masking and reward shaping, showing fast infer-
ence at test time but requiring substantial training
steps and careful reward shaping, with transfer brit-
tleness across feeders/fault patterns (Jacob et al.,
2024; Wang et al., 2024). Hierarchical MARL mit-
igates long-horizon credit assignment by introduc-
ing macro-choices, yet still lacks hard feasibility
guarantees without explicit guards.

The complementary limits of MILP (slow, ex-
ponentially scaling runtimes) and RL (training-
and topology-specific policies with brittle trans-
fer) motivate a third path: language-conditioned
planning over constrained affordances. Two criti-
cal factors make large language models (LLMs)
uniquely suited to this problem: computational
scalability and adaptability to human-in-the-loop
interventions.

First, LLMs provide fast inference that scales
gracefully. While MILP solvers achieve near-
optimal solutions on small networks in seconds,
they encounter exponential complexity on larger
topologies. In our experiments, time-capped MILP
required up to 60 minutes per decision on the IEEE
33-node feeder, far exceeding the 5-minute de-
cision window, whereas LLMs maintain sub-20-
second latency.

Second, LLMs accept mid-episode natural lan-
guage updates reflecting real-world volatility. Dur-
ing disaster response, operators receive fragmented
field reports (road closures, revised damage esti-
mates). Encoding these into MILP requires refor-
mulating and cold-starting the optimization, while
RL agents face out-of-distribution states. LLMs
interpret natural language patches and immediately
replan.

Prior work shows how language-conditioned af-
fordances constrain LLM generation and offload
symbolic checks (Ahn et al., 2022; Yao et al., 2023;
Schick et al., 2023). To our knowledge, no prior
LLM system addresses power distribution restora-

tion with joint RC-MPS-switch coordination and
explicit safety guarantees.

In this paper, we propose LLM-based Agile
Power Distribution Network Restoration from
DisAstrous Events (LARA), which follows this
affordance-first, language-conditioned planning
paradigm. Our contributions are:

• We formulate power distribution network
restoration as a language-conditioned plan-
ning problem, enabling LLMs to reason over
constrained, prevalidated action spaces.

• LARA proposes an affordance-first, language-
driven planning approach that decouples fea-
sibility computation from LLM reasoning.

• LARA achieves near–MILP performance on
IEEE-13 node and exceeds time-capped MILP
by close to 13% on IEEE 33-node feeders with
zero constraint violations using less than 1%
of the wall-clock runtime of the MILP.

2 Methodology

In this section, we detail the LARA method and
begin by formulating the problem in Section 2.1.
Figure 1 provides a high-level workflow: (1) greedy
switch reconfiguration handled by the environment
(Sec. 2.2), (2) affordance precomputation exposing
only topology-safe options (Sec. 2.3), (3) LLM
synthesis of RC/MPS macro-actions over those IDs
(Sec. 2.5), and (4) validate–execute–replan until
any agent becomes idle; this loop is executed by
the simulation environment. We also accept mid-
episode human updates (Sec. 2.7).

2.1 Problem Formulation

We model post-disaster restoration as a discrete-
time process t = 0, . . . , T on a radial feeder with
a single source and many load nodes. Each load
n has active/reactive demand (Pn, Qn) and a pri-
ority weight Wn ∈ {1, . . . , 10}. Each damage
point (DP) k lies on a line and has remaining re-
pair workload wk. The controllable agents are RCs,
MPSs, and switches. Each RC has a travel speed
and a repair rate (work units per step); each MPS
has a travel speed, maximum real/apparent power
(Pmax, Smax), and a finite energy budget. An is-
land is a group of nodes that currently cannot re-
ceive power from the source because faults or open
switches break the path. Let S denote the set of
controllable switches and Sopen,t ⊆ S the subset
that is open at time t.

At time t, the state st includes agent posi-



Figure 1: LARA architecture diagram

tions/resources, the open/closed switch set, {wk},
and the energized loads Lt. A joint macro-action is

at =
(
αcrew,t, αMPS,t, αswitch,t

)
,

where αcrew,t assigns each crew to a fault (or idle),
αMPS,t = (mt, vt, Ct) selects an MPS mt, a con-
nection node vt, and a feasible subset of loads Ct

to supply, and αswitch,t ⊆ Sopen,t is a set of switch
closures. The simulator advances the state via
st+1 = F (st, at), where F is a simulator transi-
tion function that updates the state, by applying
agent travel, repair progress, switch toggles and
MPS connection.

We maximize cumulative prioritized load re-
stored:

max
{at}Tt=0

T∑
t=0

∑
n∈Lt

PnWn. (1)

Hard constraints (enforced by the simulator).
(i) Radiality: only legal (cycle-free) switch clo-
sures are allowed each step; the feeder remains
loop-free at all times. (ii) MPS power limits:
whenever an MPS supplies Ct, the real and ap-
parent power satisfy

∑
n∈Ct

Pn ≤ Pmax and√(∑
n∈Ct

Pn

)2
+
(∑

n∈Ct
Qn

)2 ≤ Smax. (iii)
MPS energy budget: each MPS has finite energy
and cannot supply once depleted. (iv) Kinemat-
ics/timing: RCs and MPSs move at finite speeds;
repairing fault k by a crew with repair rate r takes
time wk/r; a switch closure consumes one step;
an MPS requires travel plus a one-step connection
before supplying. All feasibility checks are ap-
plied before actions execute, and F respects these
dynamics when producing st+1.

The constraints above directly govern the sched-
uled entities (RCs, MPSs, switches) and are strictly
enforced by our simulator. In practice, distribution
systems also require power-flow-driven constraints
such as nodal voltage limits and line thermal capac-
ity limits. For distribution networks operating near
nominal voltage, LinDistFlow provides a widely ac-
cepted linearized approach (Baran and Wu, 1989b;

Taheri et al., 2025; Lei, 2019; Sun et al., 2023).
Incorporating such constraints into our affordance
precomputation is straightforward, as they impose
additional linear inequalities on feasible load sub-
sets, but we leave this to future work.

2.2 Greedy Switch Reconfiguration
Switch selection is performed by the simulator us-
ing a fast greedy procedure that avoids the 2|S| com-
binatorial search an LLM cannot reliably execute.
A reconfiguration is triggered whenever a reconfig-
uration is required prior to the LLM call. Starting
from the current open/closed set, we enforce legal-
ity by preserving radiality via a reachability/loop
check. For each still-open legal switch s, we com-
pute its marginal benefit ∆(s), the newly energized
weighted load if s were closed using a Breadth-first
search from source node with island accounting,
which is O(|N |). We then close the switch with
the largest ∆(s) > 0, update the graph, recompute
all ∆(·) values, and repeat until no positive-gain
switch remains. This yields O(|S| · |N |) work per
reconfiguration event which remains a modest com-
putational cost even on large feeders.

2.3 Precomputation
From the current state we build compact tables
(IDs with vetted numbers): (i) RC to DP: for each
crew-fault pair, travel time, single/paired comple-
tion times (T1, T2), and a time-weighted benefit
proxy; (ii) MPS to Island: for each island, nearest
valid node and feasible load-combinations that sat-
isfy Pmax and Smax, each with travel/connect time
and benefit. All feasibility checks (radiality, MPS
limits, DP capacity) are enforced here.

2.4 Interface structure
The LLM receives a structured natural language
description of the current state comprising: (i)
network topology with node connectivity and dis-
tances, (ii) agent states (RC/MPS locations, re-
sources, and status), (iii) damage point locations
and remaining workloads, (iv) island specifications
(isolated node sets with aggregate power demand
and priority), (v) precomputed affordance tables
(RC-to-fault and MPS-to-island options with travel
times, repair durations, and benefit estimates), and
(vi) operative constraints (radiality, MPS power
limits, energy budgets). The LLM outputs a struc-
tured plan with: (i) crew assignments mapping each
RC to a target fault or idle status (e.g., RC1→DP2),
(ii) MPS assignments specifying connection node



and load subset (e.g., MPS1→node 5, supply {node
5,node 6}), and (iii) natural language reasoning
traces explaining the coordination strategy. The
simulator validates all returned IDs against the pre-
computed tables before execution.

2.5 LLM Plan Synthesis

To improve robustness, we sample k∈{1, 3, 5} di-
verse plans in parallel and deduplicate them. While
the LLM could potentially provide infeasible ac-
tions, we have not encountered this due to careful
prompting that requires the LLM to choose from
the precomputed set of feasible actions.

2.6 Simulation-Guided Selection

Each RC/MPS candidate proposed by the LLM is
evaluated through a short rollout that follows the
same physical model used in the precomputation
phase, along with the greedy switching module
described above. The simulation proceeds until
the first reassignment trigger occurs, such as when
an agent becomes idle or a planned action is com-
pleted. A short-horizon restoration score consistent
with Eq (1) is then computed, and highest scoring
candidate is selected, with ties resolved in favor of
earlier proposals. The chosen candidate is executed
step by step until an agent becomes idle, at which
point a reassignment request is issued to the LLM.

2.7 Human-in-the-Loop Decision-Making

The planner allows real-time edits by human op-
erators during post-disaster response. At any step,
operators can modify crew speeds, fault durations,
MPS limits, or block/clear roads reflecting updates
common in emergency scenarios. We apply a state
patch, recompute only affected affordances, and
replan using LLM. Unlike MILP, this incurs no
retraining or full re-solving overhead.

3 Experiments

We evaluate LARA on two standard distribution
feeders: the IEEE 13-node test feeder, with 50
randomized scenarios, and the IEEE 33-node test
feeder, with 10 representative scenarios. Each sce-
nario defines fault locations and capacities, initial
positions and speeds of RCs and MPSs, initial
switch configurations, and load parameters (P,Q)
with priority weights W ∈ 1, . . . , 10. Detailed
descriptions of both test feeders, including modi-
fications and scenario generation procedures, are
provided in Appendix B.

For comparison, we implement the MILP fol-
lowing the approach of Lei (2019). This implemen-
tation serves as a reference baseline with a total
inference time capped at one hour. We also adopt
a multi-agent PPO baseline that employs CTDE
agents, incorporating action masking to filter in-
feasible operations. This baseline is referred to as
CTDE-RL. Training (refer to A.1) is conducted
separately on the IEEE 13-node and IEEE 33-node
test feeders using a single NVIDIA A100 GPU for
500k environment steps per feeder. The final check-
points are selected based on validation rewards, and
inference is performed on the CPU. We also imple-
ment a Greedy Proximity heuristic as a fast classi-
cal baseline with computational budget similar to
LARA. This method assigns each RC to the nearest
unrepaired fault, connects each MPS to the nearest
feasible island node with maximum weighted load
within power limits, and applies the same greedy
switch reconfiguration as LARA. It requires mini-
mal computation (<1s) but lacks global coordina-
tion and long-horizon reasoning. Our planner is
primarily executed on LLaMA-3.3-70B, with ad-
ditional evaluations conducted on Gemini 2.5 Pro
and Claude 3.7 Sonnet (Thinking). We perform ab-
lation studies using k ∈ {1, 3, 5} and temperature
values T ∈ {0.2, 0.5, 0.8} to assess the impact of
proposal diversity.

3.1 Evaluation Metrics
Our primary evaluation metric is %MILP, which
measures relative performance: for each scenario,
we compute (100 × Emethod/EMILP) where E de-
notes cumulative weighted power restored, then
average across scenarios; higher is better. We
also report two secondary metrics: restoration
timesteps, which counts the total simulator steps
required to fully energize all loads (lower indicates
faster completion), and decision latency, which re-
ports the median wall-clock time required by each
method to compute actions at a single decision
point (this must remain below the 5-minute restora-
tion timestep duration to avoid delaying execution
in real deployments).

3.2 Main Results
Table 1 summarizes LARA against a time-capped
MILP reference and a CTDE-RL baseline on the
IEEE 13-node and 33-node feeders. On the IEEE
33-node feeder, the time-capped MILP solver
reached optimality in only 1 out of 10 scenarios
within the one hour time limit, confirming the com-



Feeder Method %MILP
(mean)

Restoration
Timesteps (mean)

Latency
(median)

IEEE-13 node LARA (k=3) 95.58% 8.27 5.2s
IEEE-13 node RL (CTDE) 94.45% 6.51 0.5s
IEEE-13 node MILP 100.0% 4.44 5s
IEEE-13 node Greedy Proximity 58.20% 12.9 <1 s
IEEE-33 node LARA (k=3) 112.99% 12.1 18.1s
IEEE-33 node RL (CTDE) 75.16% 22.5 0.5s
IEEE-33 node MILP (time capped) 100.0% 14.6 58.8mins
IEEE-33 node Greedy Proximity 15.00% 29.6 <1 s

Table 1: Performance comparison of methods across
IEEE-13-node and IEEE-33-node feeders.

Model (k=3) IEEE-13 node
(%MILP)

IEEE-33 node
(%MILP)

Latency
(s)

LLama 3.3 70B 95.58% 112.99% 18.1
Claude 3.7 Sonnet 95.99% 103.27% 120.6
Gemini 2.5 Pro 97.85% 96.80% 100.4

Table 2: Backbone sensitivity and latency at k=3 across
LLMs (per-feeder mean score; higher is better).

putational intractability of exact optimization on
this scale. The remaining scenarios terminate at
the time cap with suboptimal but feasible solutions.
On the smaller IEEE 13-node feeder, MILP con-
sistently reaches optimality well within the cap,
making it a reliable oracle baseline for that bench-
mark.

LARA achieves 112.99% of MILP on IEEE-33
node, exceeding the time-capped baseline. LARA
achieves this in 12.1 steps on average, fewer than
time-capped MILP (14.6) and CTDE-RL (22.5), in-
dicating more efficient crew/MPS coordination. On
the IEEE-13-node testcases, LARA attains 95.6%
of MILP while averaging 8.27 steps vs. MILP’s
4.44 and RL’s 6.51. This is expected as our ob-
jective maximizes Eq 1 (weighted load-timesteps),
which rewards early restoration of high-priority
loads rather than pure makespan. LARA restores
critical loads earlier, yielding higher cumulative
reward despite longer completion time.

LARA’s performance gain on the IEEE 33-node
test system (112.99% of MILP) relative to the IEEE
13-node test system (95.58%) demonstrates its scal-
ability. The model effectively navigates larger
search spaces where classical solvers become com-
putationally bottlenecked.

To demonstrate portability of the interface, we
run the base case with k=3 on three backbones
(LLama 3.3 70B, Gemini 2.5 Pro, Claude 3.7 Son-
net (Thinking); the comparison is provided in Table
2. The models perform comparably and achieve
near 95% on the IEEE 13-node test feeder, how-
ever, on the IEEE 33-node test feeder LLama3.3
70b clearly outperforms Claude and Gemini.

Setting (k, T ) IEEE-13 node(% MILP) IEEE-33 node(% MILP)
(3, 0.2) 95.58 112.99
(3, 0.5) 94.52 110.32
(3, 0.8) 91.24 99.93
(1, 0.2) 95.26 103.83
(3, 0.2) 95.58 112.99
(5, 0.2) 96.07 112.67

Table 3: Ablation study. First 3 rows vary temperature
T with fixed k=3; last three vary k with fixed T=0.2

3.3 Ablations

We study two knobs of the method: (i) number
of proposals k∈{1, 3, 5} shows quality increases
with diminishing returns; Increasing k from 1 to 3
provides a modest benefit in IEEE-13 node and a
sizable improvement in IEEE-33 node test feeder,
however as we increase k further to 5 there does
not seem to be an increase in IEEE 33-node and
a minor increase in IEEE 13-node test feeder, this
is because the LLM tends to give fairly similar re-
sults on different LLM calls (since we are testing
with T=0.2), the minor difference in IEEE 33-node
test feeder performance can be attributed to selec-
tion of different set of MPS nodes in k=3 and k=5.
(ii) testing temperature values 0.2, 0.5, 0.8 at k=3
shows marginal drop in the model performance be-
tween T=0.2 and T=0.5 and a sharp drop when
we increase T to 0.8. Our best model performance
was achieved with k = 3 and temperature of 0.2,
balancing performance and computational cost.

4 Conclusion

We cast power distribution system restoration as
language-conditioned planning over prevalidated
affordances, separating hard feasibility from LLM
reasoning. We compose joint RC-MPS macro-
actions that are safe by construction and scored
under strict constraints. Results show that LARA
approaches MILP quality on small feeders (IEEE
13-node) and surpasses time-capped MILP and
CTDE-RL on larger benchmarks (IEEE 33-node)
with zero constraint violations and sub-20-second
decision latency.

While real-world distribution networks can con-
tain thousands of nodes, the number of dispatch-
able agents remains limited, typically fewer than
ten per service region, which prevents combina-
torial explosion. This makes LARA’s design in-
herently scalable and generalizable: the system
computes feasible affordance tables dynamically at
runtime, requiring no topology-specific customiza-
tion or fine-tuning.



Limitations

Our evaluation focuses on IEEE 13-node and IEEE
33-node test feeders with 3 to 4 agents per scenario.
While these are standard benchmarks in power
systems research, empirical validation on utility-
scale feeders with hundreds of nodes would further
demonstrate scalability. The modeled constraints
focus on agent dispatch, radiality, and MPS power
limits. Incorporating nodal voltage limits and line
thermal capacity constraints via LinDistFlow re-
mains future work. All results are simulation-based,
and real-world deployment would require valida-
tion against operator practices, communication de-
lays, and field conditions.
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A Appendix

A.1 CTDE-RL Baseline Details
We implement a centralized-training, decentralized-
execution (CTDE) PPO baseline (“CTDE-RL”). A
centralized critic consumes a compact global state
embedding, while decentralized actors—one each
for RC, MPS, and switches produce actions for
their respective agents. Illegal actions are masked
before sampling to ensure feasibility.

For comparability with LARA, the same sim-
ulator and physics are used. The environment
enforces radiality at every step and hard-checks
MPS real/apparent-power limits. Episodes termi-
nate when all faults are repaired or when a fixed
step cap is reached, identical to the setting for the
other methods.

Action spaces are discrete. The RC actor se-
lects a crew-to-fault assignment or an idle/continue

choice; faults that are unreachable or already com-
pleted are masked. The MPS actor selects a connec-
tion node together with an index to a feasible load
subset; options violating Pmax or Smax are masked.
Unlike LARA, switching is learned: a dedicated
switch actor chooses a legal switch toggle (or no-
op) among currently open, cycle-free candidates,
with illegal closures masked by the environment.

Observations are factorized by agent and nor-
malized online. Each RC observes its position,
speed, repair rate, current assignment, distances
to a shortlist of feasible faults, and the remaining
work for that shortlist. Each MPS observes its posi-
tion, travel speed, (Pmax, Smax), remaining energy,
and a shortlist of feasible connection options (node
identifier plus a summary of the load subset). The
critic additionally receives global summaries of all
damage points (locations and remaining work), a
summary of energized load, and a compact reacha-
bility fingerprint induced by the current switch and
fault configuration.

The per-step reward equals the newly energized
weighted load

∑
n∈∆Lt

PnWn, i.e., the exact incre-
ment of the reward objective; no additional shap-
ing is used. Networks are multilayer perceptrons
with hidden widths 256, 128, and 64 and ReLU
activations; hidden layers use layer normalization,
and categorical identifiers (e.g., fault or connec-
tion indices) are embedded and concatenated to
continuous features.

Optimization uses PPO with the clipped surro-
gate objective and Adam. Unless otherwise noted,
γ = 0.99, λ = 0.95, clip ratio 0.2, learning rate
3× 10−4, entropy coefficient 0.01, value-loss co-
efficient 0.5, gradient-norm clip 0.5, rollout length
128, four minibatches, and four epochs per update,
with N parallel environments chosen to keep the ef-
fective batch size stable. We train separately on the
IEEE-13 node and IEEE-33 node test feeders for
500k environment steps each on a single NVIDIA
A100 GPU, select checkpoints by validation re-
ward, and evaluate on CPU with masked greedy
(argmax) action selection.

Separate training per feeder is required because
the observation and action cardinalities depend
on feeder topology and scale (numbers of nodes,
switches, feasible connection options, and mask-
ing sets). A single shared policy would face mis-
matched heads and distribution shift across feeders,
which empirically degrades transfer.

Scenario splits are identical across methods:
CTDE-RL uses training and validation scenarios to
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fit and select checkpoints, and all methods are fi-
nally evaluated on the same held-out test scenarios
reported in Section 3.2. The underlying constraints
and physics are identical; only the switching deci-
sion differs, being learned in CTDE-RL and greedy
in LARA.

B Sample Topologies

B.1 IEEE 13-Node Test Feeder

The IEEE 13-node feeder is a widely adopted
benchmark for distribution system research (Ker-
sting, 2001). Its complete technical specifications
are published and openly available from the IEEE
PES Test Feeders repository.1 Although relatively
small, it captures typical characteristics of real dis-
tribution grids, including unbalanced load distri-
bution, diverse power factor conditions, and radial
topology under normal operation, which makes
it well-suited for proof of concept studies. This
benchmark and its variants are commonly used in
top-tier power systems research to validate new
restoration methods (Roofegari nejad et al., 2019;
Vu et al., 2024; Wang et al., 2019; Chen et al.,
2018).

In our study, we make one minor modification
to the standard IEEE 13-node feeder: we add a
normally-open tie line to enable partial load restora-
tion when a fault occurs. All other electrical pa-
rameters (line impedances, load values, voltage
levels) remain identical to the publicly available
IEEE data. This adjustment increases the solution
space and better demonstrates the capability of the
proposed method. Since the IEEE model does not
provide assumptions regarding transportation dis-
tances between nodes, we reasonably derive these
distances from line impedances and convert them
into integer per-unit representations. Such small
adaptations to IEEE benchmark feeders for evalu-
ating new approaches are widely accepted practice
in power system studies (Roofegari Nejad and Sun,
2019; Konar et al., 2023).

We generate 50 randomized scenarios by sam-
pling 2–5 simultaneous faults (locations and work-
loads), initial positions and speeds for 2 repair
crews and 1 MPS, and load priority weights W ∈
{1, . . . , 10}. Agent kinematics follow finite speeds:
RCs move and repair at fixed rates per timestep,
while each MPS travels then spends one connec-
tion step before supplying feasible load subsets

1https://cmte.ieee.org/pes-testfeeders/
resources/

subject to its Pmax, Smax, and finite energy budget.
Switch actions are determined by the greedy re-
configuration module and always preserve radiality.
Episodes terminate when all faults are repaired and
no island remains unserved. The network diagram
is shown in Figure 3.

B.2 IEEE 33-Node Test Feeder
We use the standard radial 33-node feeder (Baran
and Wu, 1989b), which is also publicly available
from the IEEE PES Test Feeders repository. This
larger benchmark provides a more challenging test
case to verify generalizability and scalability. The
feeder operates with a single source node and in-
cludes priority-weighted loads (W ∈ {1, . . . , 10})
representing varying criticality levels across the
distribution network.

Scenarios contain 6 to 8 simultaneous faults, 2
repair crews (RCs), and 2 mobile power sources
(MPSs). As with the 13-node feeder, RCs move
at finite speed and repair at a fixed per-step rate.
Each MPS travels, then spends one connection step
and may supply any feasible subset of local loads
subject to its Pmax, Smax, and finite energy budget.
Switch actions are set by the greedy reconfiguration
module and always preserve radiality. We evaluate
10 representative scenarios with randomized fault
placements and workloads, initial RC and MPS
positions and speeds, and load priorities. Episodes
terminate when all faults are repaired and no island
remains without grid or MPS supply. As shown in
the simulation results, the restoration problem in
the IEEE 33-node feeder becomes highly complex,
as the MILP solver can hardly find the optimal
solution within one hour. The network diagram is
shown in Figure 2.

https://cmte.ieee.org/pes-testfeeders/resources/
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Figure 2: IEEE 33-node test feeder diagram (S1–S10 are switches).

Figure 3: Sample IEEE 13-node test feeder test case. N1–N13 are nodes; R1, R2 are RCs; S1, S2 are switches; DP1,
DP2 are faults. Node labels show [active power, reactive power, weight].
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