
A3FR: Agile 3D Gaussian Splatting with Incremental Gaze
Tracked Foveated Rendering in Virtual Reality
Shuo Xin∗

Tandon School of Engineering
New York University

New York, USA

Haiyu Wang
Tandon School of Engineering

New York University
New York, USA

Sai Qian Zhang
Tandon School of Engineering

New York University
New York, USA

Abstract
Virtual reality (VR) significantly transforms immersive digital in-
terfaces, greatly enhancing education, professional practices, and
entertainment by increasing user engagement and opening up new
possibilities in various industries. Among its numerous applica-
tions, image rendering is crucial. Nevertheless, rendering method-
ologies like 3D Gaussian Splatting impose high computational de-
mands, driven predominantly by user expectations for superior
visual quality. This results in notable processing delays for real-
time image rendering, which greatly affects the user experience.
Additionally, VR devices such as head-mounted displays (HMDs)
are intricately linked to human visual behavior, leveraging knowl-
edge from perception and cognition to improve user experience.
These insights have spurred the development of foveated rendering,
a technique that dynamically adjusts rendering resolution based
on the user’s gaze direction. The resultant solution, known as gaze-
tracked foveated rendering, significantly reduces the computational
burden of the rendering process.

Although gaze-tracked foveated rendering can reduce rendering
costs, the computational overhead of the gaze tracking process
itself can sometimes outweigh the rendering savings, leading to
increased processing latency. To address this issue, we propose an
efficient rendering framework called A3FR, designed to minimize
the latency of gaze-tracked foveated rendering via the paralleliza-
tion of gaze tracking and foveated rendering processes. For the
rendering algorithm, we utilize 3D Gaussian Splatting, a state-of-
the-art neural rendering technique. Evaluation results demonstrate
that A3FR can reduce end-to-end rendering latency by up to 2×
while maintaining visual quality.

CCS Concepts
•Computingmethodologies→Rendering;Tracking; •Human-
centered computing→ Virtual reality.

Keywords
AR/VR, 3D Gaussian Splatting, Gaze tracking, Foveated rendering

∗Also with Stanford University, work done during internship at New York University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1537-2/2025/06
https://doi.org/10.1145/3721145.3735112

grad gradgrad

Gaze
tracking
 DNN

Linear

Linear

Block 4

Block 3

Block 2

Block 1

Linear Linear

(a) (b)

U4 U3 U2 U1

Sub-network 1
Sub-network 2 Sub-network 3

GPUCPU

Gaze
Tracking

DNN

3DGS

Comm

Eye
camera

Near
eye

image
(0.3,0.5)

Gaze
direction

Inter-foveal

Peripheral

Foveal

VR display

G
aze

Tracking D
N

N Near-
center

Fovea

(a) (b)

Figure 1: The framework of gaze-tracked foveated rendering.

1 Introduction
Virtual Reality (VR) technologies fundamentally modify interaction
modalities with digital systems, integrating physical and virtual
domains through immersive frameworks. Across fields like enter-
tainment, gaming, education [3, 64, 67], healthcare [13, 21, 47], and
others [14, 27], their significance remains substantial. VR facilitates
user engagement with sophisticated simulations and scenarios via
comprehensive immersive contexts. VR is reshaping not only con-
tent consumption but also how we learn, work, and communicate,
fostering innovation and expanding possibilities for the future of
human-computer interactions.

Image rendering critically determines AR/VR system efficacy
and user satisfaction. Within VR, rendering precision substantially
affects perceptual authenticity and immersion quality for users.
It is vital to achieve high-resolution and low-latency rendering to
ensure a seamless and interactive user experience, especially during
movements of the head and body. One such rendering algorithm is
3D Gaussian Splatting (3DGS) [28] , a rasterization technique for
real-time radiance field rendering. It enables the real-time rendering
of photorealistic scenes learned from small image samples and
achieves state-of-the-art performance in visual quality compared
to other methodologies.

Although the computational power of VR devices has advanced
rapidly over the past decade, most rendering algorithms imple-
mented onVR devices, including 3DGS, are still very time-consuming:
amajor barrier to achieving the desired low-latency, high-resolution
output. These complex algorithms, essential for creating detailed
and immersive environments, require significant computational re-
sources and processing time, which can disrupt the user experience
by causing delays in visual feedback in response to user actions.

Within VR, the human visual system primarily enables user en-
gagement with virtual environments. Across the visual field, human
acuity varies, peaking at the fovea in the retinal center for maximal
resolution, as shown in Figure 1 (a). Foveated rendering exploits
this acuity gradient, prioritizing computational resources for the
central region while reducing allocation to peripheral areas. This
technique, termed Foveated Rendering, greatly boosts VR system

1

https://doi.org/10.1145/3721145.3735112

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Xin et al.

grad gradgrad

Gaze
tracking

 ViT

Linear

Linear

Layer 4

Layer 3

Layer 2

Layer 1

Linear Linear

(a) (b)

U6

U3 U2 U1

Sub-network 1
Sub-network 2 Sub-network 3

CPU

Gaze
Tracking

DNN

3DGS

Comm

U5 U4

Linear Linear

Layer 5

Layer 6

GPU

(a) (c)

Gaze tracking
Rendering

Time

GT1 GT2
R1 R2

(b)

Figure 2: (a) A3FR framework. (b) and (c) depict the workflow
of the conventional and A3FR TFR execution, respectively.
GT1 and GT2 denote the gaze tracking process, with GT1
representing the completion of generating initial results and
GT2 showing the final gaze tracking outcomes. R1 and R2
indicate the incremental rendering of 3DGS.

performance by decreasing the rendering load while maintaining
perceived visual quality, establishing it as a vital innovation in VR
technology.

To implement foveated rendering, it is essential to track the gaze
direction of the users in real time, which then triggers the start
of foveated rendering. Gaze-Tracked Foveated Rendering (TFR)
enhances VR rendering efficiency through gaze-tracking systems,
typically employing deep neural networks (DNNs) for implementa-
tion. By precisely determining the user’s point of focus in real-time,
TFR system can precisely catch the location of the foveal region
which is rendered with the highest resolution (Figure 1 (b)), fol-
lowed by the near-center region, inter-foveal region and peripheral
region, which will be rendered from high to low resolution. How-
ever, while foveated rendering reduces computational costs, the
gaze tracking process adds extra latency that can sometimes exceed
the time saved in image rendering.

To reduce the overall processing latency of TFR, this paper intro-
duces A3FR, an efficient execution framework for TFR with 3DGS
that utilizes parallel processing by executing gaze tracking on the
CPU and foveated rendering on the GPU of AR/VR devices, as illus-
trated in Figure 2 (a). A3FR enables interleaved execution of gaze
tracking and rendering tasks, significantly reducing the end-to-end
execution time per frame.

To achieve the interleaved operation between gaze tracking and
foveated rendering, we have developed a multi-resolution DNN
training framework that simultaneously trains the gaze-tracking
DNN across different configurations. During the operation, the
gaze tracking DNN, implemented on the CPU within the HMD,
rapidly produces initial prediction results. These results initially
guide the preliminary rendering process of 3DGS on the GPU in
the VR system. As the predictions from the gaze tracking DNN be-
come increasingly accurate, the rendering process is incrementally
adjusted (Figure 2 (c)), significantly reducing the total execution
latency of the conventional TFR, whose processing flow in Figure 2
(b).

To further optimize the TFR cost of 3DGS, we propose Adaptive
Mesh Refinement (AMR), a technique that reduces computational
and memory requirements compared to a uniform resolution while
preserving the detailed representation of complex phenomena in
advanced simulation and rendering algorithms. Overall, our contri-
bution can be summarized as follows:

(d)

1
x

2
0
x
-
1
0
0
x

Eye
camera

MIPI Network on Chip

CPU …

DMAVR
Display

AudioSoC GPU

…

Ti
m

e

<
1
x

(c)

Inward-facing
eye camera

VR display User

VR HMD

(b)

θi
d

ri

c
rfΔθ

VR display
(side view)

(a)

saccade

(a)

fixation

fixation

fixation

sa
cc

ad
e

Fixation
Time(b)

FixationSaccade

sa
cc

ad
e

saccade

fixation

fixation

fixation

Gaze
detection
Rendering
&Display

Sensing
+ readout

MIPI comm.

Figure 3: (a) Trace of gaze location. (b) Human eye motion
across time.

• We propose a collaborative execution framework that per-
forms foveated rendering and gaze tracking in parallel, re-
ducing the overall processing latency of AR/VR systems. The
framework also adapts to different computational resources
by balancing the workload between the CPU and GPU.
• We propose an incremental rendering strategy that refines
the output over multiple rounds of 3DGS rendering and
adaptively adjusts the local resolution based on the visual
complexity of the Gaussians.
• To enable incremental gaze prediction, we introduce an effi-
cient gaze-tracking neural network called A3FR-ViT, which
supports early gaze direction prediction and facilitates par-
allel processing for 3DGS rendering.
• The evaluation results show that A3FR can reduce the end-
to-end rendering latency by over 2× without impacting the
user experience, as shown by a comprehensive user study.

2 Background and Related Works
2.1 Oculomotor Behavior in Visual Perception
The human visual system operates through three primary motion
modes, each serving distinct roles: fixation, which keeps the eye
steady on a single point; saccadic movements, rapid shifts of gaze
between targets; and smooth pursuit, which smoothly follows mov-
ing objects. Although smooth pursuit is less common, fixation and
saccades dominate most visual activities, playing crucial roles in
environmental scanning and detail focus, as depicted in Figure 3
(b). During fixation, the gaze centers on a single point with vary-
ing acuity across the visual field. The fovea, located centrally on
the retina, provides the highest visual resolution due to its dense
concentration of photoreceptor cells, enabling detailed and colorful
perception within the direct line of sight.

Visual acuity diminishes rapidly outside the fovea, resulting in
less sensitivity to fine details in peripheral vision. Humans typically
perform one to three rapid saccadic eye movements per second [18,
33, 35], each lasting about 20–100 ms and reaching speeds over
200◦ per second [57]. These swift movements cause temporary
visual blur, known as saccadic blur [11, 49]. Figure 3 (a) illustrates
gaze behavior within a scene, showing fixation points connected by
saccades before transitioning to another scene. This study focuses
on optimizing rendering costs during fixation, which constitutes
the majority of viewing time.

2.2 Foveated Rendering
Based on the user’s visual behavior, rendering resources can be
dynamically allocated. The TFR method employs DNN to process

2

A3FR: Agile 3D Gaussian Splatting with Incremental Gaze Tracked Foveated Rendering in Virtual Reality ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA
1
x

2
0
x
-
1
0
0
x

Eye
camera

MIPI Network on Chip

CPU …

DMAVR
Display

Eye-
tracking
camera

SoC GPU

…

Ti
m

e

<
1
x

(c)

Inward-facing
eye camera

VR display User

VR HMD

(b)

θi
d

ri

c
rfΔθ

VR display
(side view)

(a)

Gaze
detection
Rendering
&Display

Sensing
+ readout

MIPI comm.

(d)

Figure 4: (a) Relationship between tracking error and foveal region size. (b) Meta Quest Pro Head-Mounted Display (HMD). (c)
Hardware system layout of VR device. (d) Latency breakdown of TFR for a single frame.

images from the HMD’s internal eye-facing cameras, precisely iden-
tifying where the user is focusing at any given moment. The system
then creates a perceptually-optimized rendering hierarchy with the
foveal region rendered at maximum resolution, surrounded by the
near-center region, inter-foveal region, and peripheral region with
progressively reduced detail [48, 55, 71], as illustrated in Figure 1 (b).
Figure 4 (a) demonstrates how the high-resolution foveal regions
are determined. The radius 𝑟 𝑓 of this zone is:

𝑟 𝑓 = 𝑟𝑖 + 𝑐 = 𝜌𝑑 · tan(𝜃𝑖 + Δ𝜃) = 𝜌𝑑 · tan(𝜃 𝑓)1, (1)

where 𝜌 represents the display’s pixel density, 𝑑 is the fixed viewing
distance in HMD configurations, 𝜃𝑖 corresponds to the eccentricity
angle of high-acuity vision, and Δ𝜃 accounts for gaze tracking mea-
surement error. 𝑟𝑖 = 𝜌𝑑 · tan(𝜃𝑖) defines the ideal high-resolution
area, while 𝑐 = 𝜌𝑑 · [tan(𝜃𝑖 + Δ𝜃) − tan(𝜃𝑖)] provides a safety
margin to maintain visual quality despite tracking uncertainties.
Research by Lin et al. [40] established an optimal 𝜃𝑖 value of 18° for
contemporary VR applications. In most HMD settings, the viewing
distance 𝑑 remains constant due to the fixed position of the display
relative to the user’s eyes.

According to equation 1. a significant gaze tracking errors would
require larger high-resolution rendering zones, potentially under-
mining the computational benefits of foveated rendering. Process-
ing additional high-resolution pixels substantially increases ren-
dering demands and power consumption. Therefore, precise gaze
tracking becomes essential for maximizing system efficiency. Prior
studies by Lavalle et al. [37] and Kress et al. [34] demonstrate that
maintaining a seamless visual experience requires total system
latency between 20-50ms [4], emphasizing the importance of opti-
mizing both tracking accuracy and rendering performance.

2.3 Neural Rendering
3D reconstruction and novel view generation are essential tasks in
computer vision and graphics. Recent years have seen the emer-
gence of neural rendering techniques, which generate high-quality
images by inference from a learned neural network. Among these,
Neural Radiance Fields (NeRF) [51] has gained significant attention
for its ability to generate photorealistic images from 3D scenes.

1This formula assumes the gaze is centered at the front view, representing themaximum
radius of the rendering region.

However, NeRF is computationally expensive. Several variants [7–
9, 70] have been proposed to reduce rendering latencies while pre-
serving visual quality, but they still face challenges in achieving
real-time performance.

Recently, an alternative approach, 3D Gaussian Splatting [28]
(3DGS), has been shown to significantly reduces the computational
cost of the rendering process. Gaussian Splatting represents scenes
using a point cloud, with each point endowed with trainbale posi-
tion, color, opacity, angular distribution, and radial Gaussian dis-
tribution for rasterization. An example is shown in Figure 5. The
rendering begins with a model trained offline, representing the
scene as a point cloud. Each point corresponds to an ellipsoid,
shaped by the scales of 3D Gaussian distributions—referred to as
a Gaussian point. These ellipsoids are equipped with trainable pa-
rameters that control their scales, positions, orientations, opacity,
and color distribution, the latter of which is parameterized using
Spherical Harmonics (SH). Once the trained points and ellipsoids
are established, the online rendering process consists of three pri-
mary steps: Projection, Sorting, and Rasterization. Each step plays
a critical role in transforming the 3D model data for final image
production on screen.

During the projection stage (Figure 5 (a)), each ellipsoid is ini-
tially projected as an ellipse onto the image plane. The process
involves determining which ellipses intersect with a given pixel
tile (for instance, a 4×4 area as shown by the shaded region in the
figure) to accurately contribute to the pixel colors within that tile.
After that, for each tile, intersecting ellipses are sorted by their
depth relative to the image plane (Figure 5 (b)). This sorting prior-
itizes ellipses closer to the camera screen, allowing them to have
greater influence on the calculation of pixel colors.

Finally, the intersections of all ellipses within a tile and each
pixel are calculated. The color of a pixel is then determined us-
ing the classical volume rendering method. This method sums the
contributions of all intersecting ellipses, processing them from the
nearest to the farthest. This technique ensures that the pixel color
accurately reflects the visual depth of the scene, as described in Fig-
ure 5 (c). Note that, since the images are rendered at the granularity
of tiles, it is possible to selectively process only a portion of pixels
on each tile. This allows us to make a tradeoff between rendering
resolution and GPU workload.

3

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Xin et al.

Screen
space

Tiling

3D Gaussians

Projected
2D Gaussians

(a) Project (b) Sort (c) Rasterize

depth
sort by depth

outside of
current view

inside of
current view

outside of
current tile

inside of
current tile

Figure 5: An example of 3DGS Process. (a) Given a camera
pose, all 3G Gaussians (colored ellipsoids in figure) that are
inside the current camera view are projected to screen space.
(b) The projected 2D Gaussians on screen space (colored el-
lipses in figure) that are inside the current tile are sorted by
depth, i.e. distance to camera screen. (c) The opacities 𝛼𝑖 of
the relevant Gaussians are computed. The Gaussians deposit
their color one by one in the previously sorted order.

2.4 Eye-tracking
Eye-tracking methodologies can be classified into two principal
categories: appearance-based and model-based techniques [23, 78].

Appearance-based tracking techniques establish direct relation-
ships between eye imagery and gaze directions [23, 42, 65, 79,
80]. These methods necessitate extensive training datasets and
have catalyzed innovations across various machine learning frame-
works, including linear regression models [46], random forest al-
gorithms [61], k-nearest neighbor approaches [69], and convolu-
tional neural networks [6, 50]. Vision Transformers [15], which
have achieved remarkable results across numerous computer vi-
sion applications, have also been integrated into gaze tracking
systems [30]. However, their substantial computational demands
present considerable obstacles for deployment in real-time tracking
environments.

Inmodel-based approaches, researchers employ three-dimensional
eye models that replicate the eye’s biological structure to determine
gaze vectors [45, 63, 66, 68]. The implementation typically involves a
dual-stage process: initially extracting critical eye features through
specialized neural networks and mapping these onto geometric
models, followed by calculating the gaze direction from this repre-
sentation. This methodology effectively transforms gaze tracking
into a segmentation task, frequently utilizing convolutional U-Net
architectures, which account for the majority of computational re-
sources [19, 39, 73, 76]. While previous research has demonstrated
excellent accuracy in eye segmentation [12], the subsequent gaze
direction estimations can deviate by more than 2◦ from actual
measurements. These discrepancies primarily stem from imprecise
eye center and radius calculations during initialization, alongside
limitations inherent to geometric models during optimization pro-
cedures, creating misalignment between estimated and actual gaze
patterns [63].

GPU (6 layers) CPU (3 layers) CPU (6 layers)
ViT latency 11.43 ms 16.44 ms 30.93 ms

GPU(720P) GPU(1080P) GPU(1440P)
3DGS latency 27.00 ms 37.78 ms 53.14 ms

Table 1: Latency of ViT eye-tracking and 3DGS rendering

3 Methods
3.1 Overview
A typical VR device, such as a HMD, is shown in Figure 4 (b). The
inward-facing eye camera of the VR device continuously captures
images of the eye to facilitate the execution of TFR. The foveated
rendered scene is then displayed on the screen for the user to see.
Figure 4 (c) shows the high-level architecture of TFR system, which
consists of three primary components: a near-eye camera (image
sensor), a host processor, and a interconnection link (MIPI [36]).
The standard TFR workflow is depicted in Figure 4 (d). Initially,
an eye image is captured by a monochrome camera situated near
the eye. This image undergoes preprocessing and readout by the
image signal processor (ISP) before it is transmitted to the host
processor via the MIPI link. Upon reception, the host processor
forwards the image to an eye-tracking DNN, which determines
the gaze direction. The gaze direction then informs the foveated
rendering process, which adjusts the rendering of the VR scene
accordingly.

Figure 4 (d) provides an approximate latency breakdown of the
conventional TFR process. Camera sensing latency 𝑇𝑠 and MIPI
communication delay 𝑇𝑐 approximately 1 ms [5, 41, 62, 74, 82]
and less than 1 ms [2, 38], respectively, accounting for a small
fraction of the total latency. In contrast, the gaze detection latency
𝑇𝑑 , along with the subsequent rendering and display process 𝑇𝑟 ,
usually consumes a much larger portion (20-100× longer) of the
overall latency, based on the studies from [4, 59]. It is evident from
Figure 4 (d) that the majority of the total processing time 𝑇𝑡𝑜𝑡 =

𝑇𝑠 +𝑇𝑐 +𝑇𝑑 +𝑇𝑟 is consumed by gaze detection 𝑇𝑑 and rendering
𝑇𝑟 . Most TFR frameworks in HMDs execute the gaze tracking and
foveated rendering process sequentially on the GPU within the VR
device [26, 54, 60], which results in the underutilization of other
computational resources (e.g., CPU shown in Figure 4 (c)).

To illustrate this, Table 1 presents the latency of two gaze track-
ing DNNs, as introduced in [43], with three and six layers, respec-
tively. These DNNs are tested on the CPU and GPU of the Nvidia
Jetson Orin NX, a commonly used platform to simulate VR de-
vices [22, 53, 75, 81]. Additionally, we simulate the 3DGS rendering
process at three resolutions: 720P, 1080P, and 1440P on the GPU of
the Jetson Orin NX.We note that running eye tracking concurrently
with the 3DGS introduces an additional 12ms of TFR latency. In
contrast, offloading the gaze tracking task to the CPU results in a
latency similar to that of 3DGS rendering on the GPU.

Therefore, it would be advantageous to parallelize the gaze track-
ing process with the 3DGS rendering process, utilizing both the
CPU and GPU to minimize the total TFR latency, denoted as 𝑇𝑡𝑜𝑡 .
Thus, 𝑇𝑡𝑜𝑡 becomes 𝑇𝑡𝑜𝑡 = 𝑇𝑠 +𝑇𝑐 +max(𝑇𝑑 ,𝑇𝑟).

4

A3FR: Agile 3D Gaussian Splatting with Incremental Gaze Tracked Foveated Rendering in Virtual Reality ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA
gr

ad

Gaze
tracking
 network

Linear

Linear

Layer 4

Layer 3

Layer 2

Layer 1

Linear Linear(a) (b)

θ6

θ3 θ2 θ1

Back-prop to
sub-network 1

Back-prop to
sub-network 2

θ5 θ4

Linear Linear

Layer 5

Layer 6

grad

Figure 6: (a) Multi-resolution training framework. (b) An
example of N=6 layer ViT with early-exit mechanism, the
output from each layer is connected to a linear layer to pro-
duce the gaze prediction.

The results in Table 1 indicate that it would be advantageous
to parallelize the gaze tracking process with the 3DGS render-
ing process, utilizing both the CPU and GPU to minimize the
total TFR latency, denoted as 𝑇𝑡𝑜𝑡 . Thus, 𝑇𝑡𝑜𝑡 becomes 𝑇𝑡𝑜𝑡 =

𝑇𝑠 +𝑇𝑐 +max(𝑇𝑑 ,𝑇𝑟). To accomplish this, A3FR offloads the less de-
manding gaze tracking DNN to the CPU, which allows the GPU to
dedicate its resources to the more demanding rendering tasks. Fur-
thermore, we introduce A3FR-ViT (Section 3.2) to facilitate an early
exit capability for the gaze tracking DNN. This feature produces
preliminary gaze tracking results that are immediately sent to the
GPU to start the foveated rendering process. As the gaze tracking
continues, increasingly accurate results are generated, allowing
for ongoing enhancements in the rendering quality. This approach
significantly reduces overall latency, as depicted in Figure 2 (c).
Next, we describe the design of A3FR-ViT in Section 3.2 and A3FR
intremental rendering scheme in Section 3.3.

3.2 Design of Gaze Tracking Neural Network
Vision transformer (ViT) [15] has been shown to perform well on
various tasks in computer vision. In this work, we use multilayer
ViT [15] for eye-tracking, where the input is the image of the user’s
eye captured by VR camera and the output is the user’s gaze direc-
tion. The resultant ViT, termed A3FR-ViT, processes the input image
by segmenting it into patches, tokenizing the patches, and adding
positional data before passing them through the transformer block.
The architecture includes 6 transformer blocks, each featuring 6
heads and an embedding dimension of 384. Modifications to the
original ViT design replace the classifier MLP layers with a series
of linear layers, which output the 2D gaze direction.

To achieve parallel operation between gaze tracking and foveated
rendering, we train the ViT so that the parameters in intermedi-
ate layers are used to give early predictions, which are used for
foveated rendering, before all layers finish. Specifically, we design
a multi-resolution DNN training strategy that simultaneously op-
timizes several sub-networks across distinct DNN architectures

(Figure 6 (a)). This joint optimization framework yields a multi-
resolution model that operates at varying depths. Initially, prelimi-
nary gaze tracking results are generated, which are then utilized
by the foveated rendering process. Subsequently, the two processes
run in parallel, enhancing the efficiency and responsiveness of the
system.

To implement this, we add a linear layer to the end of the selected
encoder blocks within the A3FR-ViT, allowing it to generate a
gaze direction prediction based on the intermediate outputs, as
depicted in Figure 6 (b). Here, let 𝑁 represent the total number
of selected layer blocks in the A3FR-ViT that are appended with
local exit. This configuration yields a series of 𝑁 predictions on
the gaze location, 𝑢𝑛 , derived from the intermediate results, where
1 ≤ 𝑛 ≤ 𝑁 . 𝑢𝑛 = {𝑢𝑛,𝑥 , 𝑢𝑛,𝑦} further consists of x and y coordinate
of the VR display. Consequently, the loss function 𝐿𝑓 for the multi-
resolution training is defined as the sum of the training losses from
each of these early-exit points.

𝐿𝑓 =

𝑁∑︁
𝑛=1

𝜆𝑛𝐿𝑔 (𝑢𝑛, 𝑢𝑔𝑡), (2)

where𝑢𝑔𝑡 denotes the ground truth gaze location in the dataset, and
𝜆𝑛 is a hyperparameter that specifies the importance of gaze predic-
tions at each early-exit point. 𝐿𝑔 represents the gaze prediction loss
function, with 𝐿2 loss being utilized in this study. The parameter
𝜆𝑛 reflects the relative weight assigned to each loss function. 𝑢𝑁
denotes the final gaze prediction.

To further minimize the computational demands of A3FR-ViT,
we implement tokenwise pruning [32] on the input tokens by eval-
uating their significance (attention scores) in relation to the final
gaze prediction and discarding the less important tokens. In the
self-attention mechanism of the model, tokens undergo a linear
transformation into Query, Key, and Value matrices. The attention
score is calculated through a dot product between the Query and
Key matrices, which is then scaled and processed through a Softmax
operation. This score reflects each token’s relevance to the gaze
prediction outcome. Using these scores, tokens with an attention
score below a specified threshold, 𝜎 , are filtered out. This prun-
ing effectively reduces the computational load on subsequent ViT
blocks by lowering the number of input tokens and, consequently,
shrinking the size of the intermediate activations.

3.3 A3FR Incremental Rendering Scheme
As discussed in Section 3.2, the ViT eye-tracking system provides
a series of gaze predictions 𝑢𝑖 at each exit point. These predic-
tions become more accurate progressively. The A3FR system begins
foveated rendering using these early predictions even before the fi-
nal gaze location is confirmed, refining the rendering focus as more
precise predictions become available. This strategy leverages early
predictions effectively, reducing unnecessary processing and wait
times. In terms of system operations, the A3FR-ViT and 3DGS ren-
dering processes run simultaneously on the CPU and GPU within
the HMD, enhancing hardware utilization and reducing total com-
putational delay for TFR. Prior to execution, the CPU and GPU
latencies on gaze tracking neural network execution and foveated
rendering are first profiled offline (Figure 7 (a)), and a subset of𝑀
exit points (𝑀 < 𝑁) is selected from the𝑁 available local exit points

5

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Xin et al.

Eye
camera

Near
eye

image
(0.3,0.5)

Gaze
direction

Inter-foveal

Peripheral

Foveal

VR display
G

aze
Tracking D

N
N Near-

center

Fovea

(a) (b)

CPU

GPU

Setting Rendering
Configuration

18.2ms

15.7ms

(a) Offline Tuning

Linear

Linear

B
lock 3

(0.26,
0.51)

B
lock 1

CPU GPU

Incremental
3DGS rendering

Multi-resolution
eye tracking

 (b) Round 1

Linear

Linear

(0.30,0.50)

CPU

Multi-resolution
eye tracking

+

GPU

Incremental
3DGS rendering

Rendered foveal region with predicted gaze u1+ +

GPU

P
er

ip
he

ra
l

P
er

ip
he

ra
l

Multi-resolution
eye tracking

 (c) Round 2

CPU

(d) Round 3

Incremental
3DGS rendering

P
er

ip
he

ra
l

++

B
lock 3

B
lock 1

B
lock 2

B
lock 2

Linear
Linear

(0.30,0.50)

B
lock 3

B
lock 1

B
lock 2

u1

u1 u1
u2

u2 u2C1 C2 C1

Rendered foveal region with predicted gaze u2

Figure 7: Illustration of the proposed parallel TFR procedure for a simple eye-tracking model only 1 early exit. In round 1, the
3DGS model starts precomputing and rendering at peripheral resolution. In round 2, 3DGS model receives an intermediate gaze
prediction and refines pixels the foveal regions. In round 3, final gaze prediction is passed and 3DGS model makes corrections
using the more accurate gaze.

to ensure optimal synchronization between the CPU and GPU. Fig-
ure 7 illustrates an example where𝑀 = 2. While A3FR-ViT works
on its initial layers, 3DGS concurrently renders the peripheral areas
which do not require precise gaze information as illustrated in Fig-
ure 7 (b). When the first gaze prediction 𝑢1 is made, it is sent to the
GPU to adjust the rendering to higher resolutions as needed, shown
in Figure 7 (c). With each subsequent, more accurate prediction
𝑢1, 𝑢2, etc., 3DGS adjusts its rendering area to align with the new
gaze data, as depicted in Figure 7 (d).

3.3.1 Incremental Rendering Strategy. Due to potential errors in
initial gaze predictions, the areas rendered in high resolution based
on early results (e.g., 𝑢1) might not correspond to the actual regions
requiring high-resolution detail. For simplicity, we consider the
scenariowhere the scene is rendered at two levels of resolution—one
for the foveal area and another for the peripheral area. However,
the proposed incremental rendering strategy can be adapted to
accommodate multiple resolution levels. An example is illustrated
in Figure 8 (a): Suppose the preliminary gaze prediction𝑢1 is initially
sent to the GPU, triggering the rendering process for the region 𝐶1
with a radius of 𝑟 𝑓 ,1 at the highest resolution. If𝑢1 is significantly far
from the final predicted gaze location 𝑢𝑁 , this discrepancy results
in substantial redundant rendering since 𝐶1 does not align with
the actual foveal region 𝐶𝑁 , determined by 𝑢𝑁 with a radius 𝑟 𝑓 ,𝑁 .
Conversely, when𝑢1 is sufficiently close to𝑢𝑁 , the overlap between
𝐶1 and𝐶𝑁 increases, and the wasted rendering region gets smaller,
as depicted in Figure 8 (b).

Our aim is to minimize unnecessary rendering computa-
tions by ensuring that the areas rendered based on initial gaze
predictions (e.g., 𝐶1) are effectively used in subsequent refinement
processes. This approach optimizes the use of computational re-
sources by leveraging the initial rendering output in later, more
detailed rendering stages. Specifically, to eliminate the unnecessary
rendering in 𝐶1, we must ensure that the sum of the radius of 𝐶1
and the distance between 𝑢1 and the final gaze prediction 𝑢𝑁 is
less than the foveal region radius 𝑟 𝑓 ,𝑁 denoted by 𝐶𝑁 (Figure 8(c)).
This condition guarantees that 𝐶1 is entirely contained within the
foveal region 𝐶𝑁 . Mathematically, this relationship is formalized

in the following theorem:

𝑟 𝑓 ,𝑖 ≤ 𝑚𝑎𝑥 (0, 𝑟 𝑓 ,𝑁 − 𝑑𝑖𝑠𝑡 (𝑢𝑖 , 𝑢𝑁)) 1 ≤ 𝑖 ≤ 𝑁 (3)

where i is set to 1 shown in Figure 8 (c) and 𝑑𝑖𝑠𝑡 (.) denotes the 𝑙2
distance between two points. To ensure efficient utilization of com-
putational resources, the maximum radius of the rendered region
should be determined by Equation 4. Once the next predicted gaze
location 𝑢𝑖 (1 ≤ 𝑖 ≤ 𝑁), is generated and is closer to 𝑢𝑁 , the corre-
sponding radius 𝑟 𝑓 ,𝑖 can be repeatedly computed using Equation 4,
ensuring that only the incremental region is rendered, as shown in
green in Figure 8 (d).

3.3.2 Offline Profiling. To optimize rendering settings, equation 4
is based on the known distances dist(𝑢𝑖 , 𝑢𝑁) between the predicted
gaze locations 𝑢𝑖 and 𝑢𝑁 . In practical applications, we utilize the
average distance between gaze locations as determined from eye-
tracking training data (e.g. OpenEDS 2020 [52]). Consequently,
Equation 4 can be reformulated to incorporate this average distance,
providing amore empirical basis for adjusting rendering parameters
to enhance accuracy and efficiency in real-time applications.

𝑟 𝑓 ,𝑖 =𝑚𝑎𝑥 (0, 𝑟 𝑓 ,𝑁 − E(𝑑𝑖𝑠𝑡 (𝑢𝑖 , 𝑢𝑁))) 1 ≤ 𝑖 ≤ 𝑁 (4)

where E(.) denotes the expected value across the training data set.

3.3.3 Incremental Rendering under Dynamic Performance Variation.
To minimize overall latency, it is crucial that the CPU completes
the gaze prediction at the 𝑖-th local exit 𝐿𝑖 before the rendering of
𝐶𝑖−1 finishes. If not, 𝐶𝑖 will have to wait until 𝑢𝑖 is fully processed,
resulting in increased overall latency. Additionally, the processing
speeds of the GPU and CPU can fluctuate over time due to resource
sharing with other programs, making it challenging to develop a
fixed scheduling algorithm for minimal processing time.

To address this issue, we’ve developed an asynchronous incre-
mental rendering scheme that allows the GPU and CPU to operate
independently. Under this scheme, the latest predicted gaze 𝑢𝑖 is
stored in GPU memory, and the incremental rendering process runs
concurrently on the GPU. Once the GPU completes rendering the
current region 𝐶 𝑗 , (𝑗 < 𝑖), it retrieves the most recent gaze pre-
diction from its memory and initiates the next round of rendering
based on this updated gaze information, as depicted in Figure 7.

6

A3FR: Agile 3D Gaussian Splatting with Incremental Gaze Tracked Foveated Rendering in Virtual Reality ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

+

Wasted

(a)

+
uN

u1

CN

rf,N

rf,1

+
+

uN

CN

rf,N
rf,1u1

(c)

+
+

CN

(d)

+ u1u2uN

+
+

uN

CN

rf,N

rf,1

u1

(b)
Wasted

C1 C1

+

CN

(e)

+uj
uN

rf,N
rmaxj

Cj
maxCj

C1
C1

C2

Figure 8: An illustration of the A3FR operation is provided:
(a) If the distance between 𝑢1 and 𝑢𝑁 is large, the entire re-
gion centered at𝐶1 will be wasted. (b) As 𝑢1 and 𝑢𝑁 get closer,
the extent of the wasted region decreases. (c) No region will
be wasted if the radius 𝑟 𝑓 ,1 meets the requirements set forth
in equation 4. (d) The green region will be rendered as 𝑢2
approaches 𝑢𝑁 . (e) If no additional gaze predictions are forth-
coming, the rendering process will persist until the rendering
of 𝐶𝑚𝑎𝑥

𝑗
is complete, indicated by the dotted yellow circle.

However, one issue that arises is when the CPU processing speed
significantly lags behind that of the GPU, potentially delaying the
availability of the next gaze prediction 𝑢𝑖 when 𝐶𝑖−1 finishes ren-
dering. This situation can prevent the GPU from proceeding with
the next round of the rendering process. To address this, we have
developed a speculative incremental rendering (SIR) method,
which allows the rendering process to continue even if no new gaze
prediction is available. In this scenario, the incremental rendering
process will continue, centered on 𝑢 𝑗 , until a more accurate gaze
prediction is received. If no additional gaze predictions are received,
the rendering process will conclude once the region 𝐶𝑚𝑎𝑥

𝑗
, defined

by the maximum radius 𝑟𝑚𝑎𝑥
𝑗

, has been fully rendered. This can be
illustrated as follows:

𝑟𝑚𝑎𝑥
𝑗 = 𝑟 𝑓 ,𝑁 + E[𝑑𝑖𝑠𝑡 (𝑢 𝑗 , 𝑢𝑁)] (5)

An example is shown in Figure 8 (e). Assume that 𝐶 𝑗 has been
rendered and no further gaze predictions are received. In this case,
the rendering process will continue until the region delineated by a
dotted circle, with a radius of 𝑟𝑚𝑎𝑥

𝑗
, is fully rendered. This ensures

coverage of the actual foveal region centered at 𝑢𝑁 .

3.4 AMR-based Rendering Strategy of A3FR
Adaptive mesh refinement (AMR) is a technique widely used in
scientific computing and finite-elementmethods [10, 44, 77]. It adap-
tively reduces/enhances the local tile resolution based on local error
estimation in a scientific simulation or graphic rendering. AMR
saves the computation workload and memory usage, compared to

a uniform resolution, while maintaining the details of various phe-
nomena in intricate simulation and rendering algorithms. Moreover,
it allows one to reuse the results from lower quality levels when
computing higher levels of refinement. In this paper, we further
apply this idea to the practice of 3DGS.

Building on the incremental rendering scheme outlined in Sec-
tion 3.3.1, we now explore adaptive adjustments to the rendering
resolution for 3DGS to achieve computational savings. Specifically,
for each block of adjacent 2 × 2 pixels, depending on the relative
distance between the pixel tile and the predicted gaze direction, a
subset of the pixels within the current tile will be rendered accord-
ingly. As illustrated in Figure 9, for each block of adjacent 2 × 2
pixels in the peripheral region, only the top left pixel is rendered.
Similarly, in the inter-foveal, near-center, and foveal regions, the
number of rendered pixels within the 2 × 2 tile increases accord-
ingly. The un-rendered pixels simply inherit or interpolate from
the rendered pixels. This provides a knob of 4 levels of resolutions,
ideally corresponding to 4 regions of eccentricity from gaze center.
Our implementation can also be extended to any 𝑁 2 levels, by se-
lectively rendering pixels on 𝑁 ×𝑁 block. The user study described
in Section 4.7 shows that this adaptive rendering strategy will not
cause appreciable visual quality degradation, while greatly saves
the computational cost.

3.5 Implementation Details
In practice, to implement incremental rendering, we made several
technical changes to the original 3DGS algorithm [29]. First, before
rendering, the 3DGS algorithm precomputes several intermediate
quantities: 3D Gaussian points projected to screen space, subsets of
Gaussian points on each tile, sorted list of Gaussians by depth and
etc. To achieve rendering by multiple rounds without redundant
precomputing, the intermediate variables computed in round 1
are buffered, and later rounds directly use the buffered variables
without the need to access the original 3D Gaussian representations
of the scene. Also, to make the best use of the cooperative group
feature in CUDA, the original 3DGS model uses a tiling of 16 × 16
pixels per tile, i.e. 256 threads per cooperative group at render time.
To achieve adaptive, incremental rendering, we make the following
changes: we choose a tiling of 32 × 32 pixels per tile. The tile is
further subsampled to 16 × 16 blocks of 2 × 2 pixels. At render
time, the tile will raise 4 cooperative groups, corresponding to label
1 ∼ 4 in Figure 9, and each group consists of 256 threads rendering
the 16 × 16 blocks. The tiles are labeled with accuracy levels 1 ∼ 4
according to visual eccentricity from the gaze center. If, for instance,
a tile is labeled as level 2, then only 2 out of the 4 groups of 256
threads will run through the 3DGS calculation, while the other 2
will exit immediately after checking, thus saving the computing
resources considerably.

3.6 Summary
The A3FR framework seamlessly integrates the techniques dis-
cussed in the previous sections. We employ the A3FR-ViT with
an early-exit mechanism for eye-tracking, which generates a se-
quence of increasingly accurate gaze predictions at multiple exit
points. The GPU implements 3DGS to perform foveated render-
ing based on these gaze predictions in an incremental fashion,

7

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Xin et al.

1 3

4 2

1 3

4 2

1 3

4 2

1 3

4 2

(a) (b) (c) (d)

Not rendered

Rendered

Figure 9: The adaptive rendering strategy of A3FR involves
varying the rendering detail based on proximity to the gaze
location. For pixel tiles in the peripheral region, only the
top left corner is rendered. As the tiles get closer to the gaze
location, more pixels within each tile are rendered.

with rendered regions dynamically adjusted as predictions improve.
The rendering process is adaptive, meaning the resolution of tiles
varies based on the number of gaussians intersecting with each tile.
Our AMR strategy enables progressive refinement of the output
image over multiple rendering rounds. The foveated rendering as-
pect is achieved by adjusting rendering resolution according to the
eccentricity from the user’s gaze point. The incremental render-
ing approach effectively balances the rendering and eye-tracking
workloads between CPU and GPU resources. The complete A3FR
framework is outlined in Algorithm 1.

4 Experiments
4.1 Settings

Training. We use the original 3D Gaussian Splatting [28] as our
baseline for full-resolution rendering. Following the established
methodology, we use L-1 loss and D-SSIM regularization, and in-
corporate both pruning and densification strategies during the opti-
mization phase as specified in the original work [28]. For our exper-
iments, all scenes undergo consistent training for 30,000 iterations
to ensure fair comparison across different rendering approaches.

The A3FR-ViT architecture consists of 𝑁 = 6 transformer layers,
with a local exit implemented at the end of each layer. The baseline
ViTmodel maintains the same𝑁 = 6 layer structure with early exits
at each layer (𝑛 = 1). For training, we compute loss at each exit point
using a batch-based maximum loss approach. More specifically,
in Equation 2, for training dataset 𝐷 partitioned into batches 𝐵,
the loss 𝐿𝑔 is calculated as

∑
𝑏∈𝐵 max𝑑∈𝐷𝑏

(| |𝜃𝑑 − 𝜃𝑔𝑡 | |2), where
𝜃𝑑 represents the predicted gaze direction and 𝜃𝑔𝑡 represents the
ground truth.

To evaluate A3FR-ViT, we compared it with ResNet-34 [6] and
DeepVOG [73]. For ResNet-34, we added early exit points after each
of its four residual blocks by connecting intermediate features to
linear layers for gaze prediction. With DeepVOG, we maintained
its encoder-decoder structure and positioned exit points after the
encoding stream and after each upsampling layer in the decoding
stream. All models were trained using the same loss function to
ensure fair comparison.

Datasets. For 3DGS training, we adopt four scenes from Tanks&
Temples [31] and Deep Blending [25] datasets. All the eye-tracking
models are trained and evaluated on the OpenEDS datasets [17, 20],
which were captured by VR device cameras in real time. OpenEDS
data are eye images of 640×400 resolution and are grouped into
9160 sequences of continuous eye movement, with each sequence

Algorithm 1 A3FR Framework

Input: 𝑉 (.) ⊲ A3FR-ViT function, return series 𝑉𝑙 at layer 𝑙
Input: 𝐺 (.) ⊲ A3FR-3DGS function, return rasterized pixels
Input: 𝐸 ⊲ User’s eye image captured
Input: 𝑁 ⊲ Max layers of ViT
1: 𝑟 ← Profiling(𝑉 (dataset)) ⊲ Eq. 4: foveal regions
2: 𝑆 ← 0, (0,0) ⊲ Init shared variable: layer index, gaze center
3: Spawn Process 1 and Process 2 in Parallel

Process 1: ⊲ Gaze tracking
4: for 𝑙 = 1 to 𝑁 do
5: (𝑥,𝑦) ← 𝑉𝑙 (𝐸) ⊲ Run ViT forward by 1 layer
6: 𝑆 ← 𝑙, (𝑥,𝑦) ⊲ Record gaze tracking result
7: end for

End Process 1
Process 2: ⊲ Rendering

4: 𝐼 ← 0 ⊲ Init Canvas
5: 𝑙, (𝑥,𝑦) ← 𝑆 ⊲ Query gaze tracking result
6: while 𝑙 ≤ 𝑁 do
7: 𝑀 ← AdaptiveMesh(𝑙 , (𝑥,𝑦), 𝑟) ⊲ AMR
8: 𝐼 ← 𝐺 (𝑀) ⊲ 3DGS rasterization using mesh M
9: 𝑙, (𝑥,𝑦) ← 𝑆 ⊲ Update gaze tracking result
10: end while

End Process 2

containing 100 images. All of the gaze tracking networks are trained
with 25 epochs.

Hardware. The experiments were conducted on a machine with
4-core 8-thread Intel Xeon Platinum 8259CL CPU and an Nvidia
Tesla T4 16GB GPU (1590 MHz clock, 2560 CUDA cores). The exper-
iments were conducted under two conditions: the default settings
and a modified setting with a 915 MHz clock frequency and 1024
CUDA cores. This adjustment was made to mimic the performance
of an edge device GPU, specifically the Jetson Orin NX 16GB, which
operates at a 918 MHz clock frequency and possesses 1024 CUDA
cores [1], and has been frequently used in prior research to model
rendering performance in VR devices [22, 24, 53, 58, 75, 81]. Sim-
ilarly, two settings are applied for CPU clock frequency, 2.5 GHz
and 2.2 GHz, where 2.5 GHz is the default CPU frequency, and 2.2
GHz is used to simulate the clock frequency for Jetson Orin NX
16GB.

Baseline comparison. The default A3FR framework loads the
3DGS rendering on GPU and the eye-tracking network on CPU in
parallel with communication. In experiments we compare A3FR
against two baseline rendering approaches.
• The original 3DGS rendering on GPU without the using
the gaze tracking mechanism, denoted as Full Resolution
Rendering (FRR).
• The traditional TFR framework where the gaze tracking
process and the foveated rendering process are executed
sequentially, denoted as Sequential Foveated 3DGS Rendering
(SFR).

For all the algorithms, the tiling size in the 3DGS process is set
at 32×32. Evaluations are conducted at three different resolutions:
1280×720, 1920×1080, and 2560×1440 (720p, 1080p, and 1440p).

8

A3FR: Agile 3D Gaussian Splatting with Incremental Gaze Tracked Foveated Rendering in Virtual Reality ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

4.2 Performance on Gaze Tracking
In this section, we assess the performance of gaze tracking by com-
paring A3FR-ViT with two other gaze tracking neural networks. For
A3FR-ViT, we enhance efficiency by applying tokenwise pruning,
which eliminates redundant tokens that have low attention scores,
thereby reducing the computational cost of gaze tracking. Specifi-
cally, we implement two pruning ratios, 10% and 20%, to evaluate
the impact of this reduction on the performance of A3FR-ViT.

Table 2 presents a summary of gaze tracking errors on the test
set of the OpenEDS dataset, represented by 𝜎𝑥 and 𝜎𝑦 in degrees.
It also details the processing latency on the Jetson Orin NX 16GB
CPU. For the A3FR-ViT model, the embedding layer consists of
a single convolutional layer that transforms the input image into
a sequence of tokens. In contrast, for the ResNet-based models,
the embedding layer comprises a convolutional layer, a batch nor-
malization layer, and a ReLU layer. For A3FR-ViT, ResNet-based
models, and DeepVoG, local exits are introduced to generate the
gaze location at the end of each block. Specifically, six local exits are
used for A3FR-ViT and DeepVoG, while the ResNet-based models
utilize four local exits.

From Table 2, several key observations emerge. First, the gaze
tracking error decreases for local exits attached to the deeper stages
of the neural network, as more layers contribute to processing the
gaze data, resulting in more accurate predictions. Second, A3FR-
ViT demonstrates significantly lower gaze tracking latency on the
VR CPU compared to the other two baselines, while maintain-
ing comparable accuracy. This improvement is attributed to the
implementation of tokenwise pruning and the inherent accuracy
advantages of Vision Transformers (ViT) over traditional CNNs.
Finally, as the pruning ratio increases, the gaze tracking latency for
A3FR-ViT significantly decreases without a substantial loss in accu-
racy. For instance, with 20% of tokens pruned, A3FR-ViT achieves
an end-to-end latency of 26.28ms. Increasing the pruning ratio to
20% further reduces the latency to 21.64ms, demonstrating the ef-
fectiveness of pruning in enhancing processing efficiency while
retaining performance.

During our offline profiling as Described in Sec. 3.3, both the
average tracking error and its distribution are needed. We used
the error tested on OpenEDS dataset as the underlying probability
distribution for profiling. As an example, Figure 10 shows the 2D
probability distribution, marginalized distribution and Gaussian fit
of gaze tracking error for A3FR-ViT at layer-3 and layer-6.

The lower two rows for each model in Table 2 report the by-
layer and cumulative latencies. We find that pruning gives moderate
speedup while slightly influencing tracking accuracy. The ResNet-
based model and DeepVOG are more expensive computationally,
giving significant delays of latency.

4.3 A3FR Latency Evaluation
In this section, we assess the latency performance of A3FR by
comparing it with two baseline methods, FRR and SFR, as described
in Section 4.1. Specifically, we evaluate all three solutions on four
scenes—"truck," "train," "drjohnson," and "playroom"—sourced from
the Tanks & Temples [31] and Deep Blending [25] datasets. The
evaluation is conducted at three different resolutions: 1280 × 720,
1920× 1080, and 2560× 1440 for each scene, with 100 camera poses

Figure 10: Left: Joint and marginalized distribution of gaze
tracking error using the early exit results at 3rd layer ofA3FR-
ViT. Right: The error distribution of the final gaze prediction
at 6th layer.

per resolution. The average rendering latency across these 100
camera poses is recorded. The experiments are performed using
the hardware setup detailed in Section 4.1.

The results are presented in Figure 11, where Figure 11 (a) il-
lustrates the performance under standard CPU and GPU configu-
rations, while Figure 11 (b) shows the results on the Jetson Orin
NX. Overall, A3FR consistently outperforms the baseline meth-
ods across all tested scenes, resolutions, and hardware setups. At
1080p and 1440p resolutions, A3FR achieves an average speedup
of 20% compared to SFR and 40% compared to FRR. For 720p, the
performance gain of SFR over FRR is relatively smaller due to eye-
tracking overhead, whereas A3FR still delivers an average speedup
of 30%. The results remain consistent across different scenes. This
is because A3FR parallelizes eye tracking with the 3DGS process
by distributing them between the CPU and GPU, significantly re-
ducing overall computational latency. Additionally, we evaluated
rendering performance on the "playroom" scene at 720P resolution
under reduced settings equivalent to 16 TOPS. The results demon-
strate a of latency of 151.239 ms, 104.328 ms and 76.757 ms for FRR,
SFR and A3FR, respectively.

To analyze the details of latency improvement, we present a
breakdown of latency for a sample input frame (Figure 12 (a)).
Specifically, we select the "truck" scene at 1080p resolution with
100 camera poses. Let 𝑅𝑖 denote the rendering process of 𝐶𝑖 , as il-
lustrated in Figure 7, and let 𝐿𝑖 represent the computational latency
on the CPU at the 𝑖-th exit point. It is important to note that the
maximum index 𝑖max for 𝐿𝑖 and 𝑅𝑖 may differ due to variations in
processing speed, causing either gaze tracking or 3DGS rendering
to complete fewer rounds. We observe that the preprocessing stage
of the 3DGS rendering pipeline requires a considerable amount
of computation, which can be initiated before the gaze tracking
process begins. Within the A3FR framework, the CPU and GPU syn-
chronize to enable parallel processing, effectively reducing overall
rendering latency.

4.4 Impact of Gaze-tracking Network
In this section, we analyze the impact of A3FR-ViT on overall ren-
dering latency. Specifically, we replace A3FR-ViT with the ResNet-
based gaze tracking model from Table 2 and repeat the latency
measurement on the "truck" scene at 1080p resolution over 100

9

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Xin et al.

Table 2: Accuracy Evaluation on Gaze Tracking Performance

Embedding Layer-1 Layer-2 Layer-3 Layer-4 Layer-5 Layer-6

Error (𝜎𝑥 , 𝜎𝑦)/◦ − (8.40, 9.33) (6.08, 7.05) (4.50, 4.46) (3.58, 3.38) (2.97, 2.85) (2.05, 2.16)
A3FR-ViT Latency/ms 1.00 4.10 4.34 4.46 4.40 3.90 4.06

Cumulative Latency 1.00 5.11 9.45 13.91 18.31 22.21 26.28

Error (𝜎𝑥 , 𝜎𝑦)/◦ − (8.19, 9.22) (6.10, 6.98) (4.40, 4.53) (3.55, 3.76) (3.01, 2.96) (2.53, 2.56)
A3FR-ViT Latency/ms 0.93 3.73 4.21 3.98 3.76 3.91 3.70
(0.1 pruned) Cumulative Latency 0.93 4.66 8.88 12.85 16.62 20.52 24.23

Error (𝜎𝑥 , 𝜎𝑦)/◦ − (8.17, 9.62) (6.07, 6.85) (4.61, 4.42) (3.74, 3.55) (3.16, 2.88) (2.69, 2.39)
A3FR-ViT Latency/ms 1.07 3.62 4.56 3.40 3.06 2.99 2.92
(0.2 pruned) Cumulative Latency 1.07 4.70 9.26 12.66 15.72 18.72 21.64

Error (𝜎𝑥 , 𝜎𝑦)/◦ − (7.96, 10.04) (5.45, 5.70) (2.71, 2.38) (2.24, 1.94) − −
ResNet-based Latency/ms 3.71 6.48 6.86 11.63 8.61 − −

Cumulative Latency 3.71 10.19 17.05 28.69 37.30 − −
Error (𝜎𝑥 , 𝜎𝑦)/◦ − (6.27, 8.24) (4.34, 5.13) (3.19, 3.53) (2.63, 2.88) (2.24, 2.42) (1.91, 2.03)

DeepVOG Latency/ms − 10.06 6.78 24.77 28.55 35.31 9.13
Cumulative Latency − 10.06 16.84 41.61 70.16 105.47 114.6

Chip size 814 mm2

On-chip memory ~50MB

Total memory ~96GB HBM

Cores 16,896 FP32 + 528
Tensor

Precision FP16/FP8/INT8

Memory bandwidth 0.003 Petabytes/secIntel i9 CPU Nvidia H100 GPU

Tensor Processing Unit (Google) Cerebras CS-3 Chip

Grocery Education Image edit

How much
is it?

What is
this?

Change its
color.

Feedforward
layer (FFN)

Block 2

...

Block 1

Block N

Self-attention
layer (SA)

Embedding

Positional
encodingD

ec
od

er
 b

lo
ck

(a) LLM Architecture

WK

WV

S
oftm

ax

Wo

Wup

Wgate

Wdown

WQ
FFNSAq

k

v

N
orm

alization

LLM
KV vectors
of previous

 tokens

KV vector
of current

token

KV
cache

C
urrent

token

N
ext

token

(b) Architecture of the decoder block (c) Autoregressive decoding

60
40
20

0

79
52

42
58

4536

75
49

38
58

39
27

la
te

nc
y

(m
s)

72
0P

80

truck train drjohnson playroom

75
50
25

100 87
5138

116

67
51

89
5947

114

69
55

la
te

nc
y

(m
s)

10
80

P

125

0 truck train drjohnson playroom

150
100
50

0

158

92
73

131
8164

168

93
70

127
7153

la
te

nc
y

(m
s)

14
40

P

200

truck train drjohnson playroom

FRR SFR A3FR

truck train drjohnson playroom

30
20
10

0

2925
20 2423

18
2824

19 2018
13

la
te

nc
y

(m
s)

72
0P

truck train drjohnson playroom

30
20
10

0

40
29

2217

39
28

23
31

2621

38
28

23

la
te

nc
y

(m
s)

10
80

P

truck train drjohnson playroom

60
40
20

0

53
3630

44
3327

55
3629

42
2822

la
te

nc
y

(m
s)

14
40

P

(b)(a)

Figure 11: (a) Comparison of rendering latency for A3FR
against other baseline models across 4 scenes and 3 resolu-
tions. Gray columns represent FRR with the original 3DGS
model. Yellow columns represent SFR where eye-tracking
ViT and 3DGS are running on the same GPU in serial. Red
columns represent A3FR. Latencies are shown in (ms). (b)
Latency evaluation encompasses three approaches, with the
GPU clock frequency and CUDA cores adjusted to align with
the Jetson NX Orin 16GB.

camera poses. The breakdown is presented in Figure 12 (b). Com-
pared to A3FR-ViT, the ResNet-based model significantly increases
the overall TFR processing time. This is primarily because L3 is con-
siderably more time-consuming (∼11ms) than a ViT layer (∼4ms),
while early predictions from L1 and L2 exhibit high error rates,
making the intermediate layers of ResNet-based models tend to be
either computationally expensive or less accurate.

4.5 Effect of Speculative Incremental Rendering
In this section, we examine the impact of A3FR latency caused by
variations in the relative processing speeds of the CPU and GPU. To
simulate performance fluctuations, we use systemd to consume CPU
computational resources, thereby slowing down the processing

speed of A3FR-ViT during the TFR process. The CPU utilization
rate is alternated between 50% and 100% at 0.1-second intervals. All
evaluations are conducted on the "truck" scene at 1080p resolution
and repeated over 100 camera poses. We compare the A3FR against
a baseline algorithm that did not contain speculative incremental
rendering. Namely, if the current rendering round is finished and
new gaze tracking results has been received by GPU, it will wait
until receive it before rendering further.

The results presented in Figure 12 (c) demonstrate that the A3FR
framework remains resilient to performance fluctuations. As shown
in Figure 12 (a), a reduced processing speed in A3FR-ViT leads to
slower gaze tracking output. However, compared to A3FR without
speculative incremental rendering, it still achieves a relatively low
overall TFR latency of 26.0ms. In contrast, without speculative
incremental rendering, the next rendering round would only begin
upon receiving the subsequent gaze tracking result, significantly
increasing the overall rendering latency.

4.6 Impact of AMR
Finally, we evaluate the impact of AMR on reducing TFR rendering
latency. To achieve this, we remove AMR from the A3FR frame-
work and repeat the latency evaluation across four scenes and three
different resolutions, using the same experimental settings as de-
scribed in Section 4.3. The results are presented in Figure 13. We
observe that AMR contributes to approximately a 10% improvement
in rendering latency at 1440p resolution, while its impact is less
pronounced at lower resolutions. This is primarily due to the ad-
ditional computational overhead introduced by AMR. Specifically,
during preprocessing, tiles must be sorted based on the number
of Gaussians, and their resolutions adjusted accordingly. When
the rendering load is relatively low, such as in the 720p case, this
additional processing cost becomes comparable to the potential
savings, reducing the overall benefit of AMR.

4.7 User Study
To evaluate the practical effectiveness of our A3FR approach, we
conducted a comprehensive user study to assess the visibility of

10

A3FR: Agile 3D Gaussian Splatting with Incremental Gaze Tracked Foveated Rendering in Virtual Reality ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

Saliency
DNN

Loss

(h,w,3)

(H
, W

, 3
)

SegFormer
Deeplab…

Sseg(.)

FSNet Architecture

Gaze
direction

Uniform
subsampling (h,w,1)

(h,w,3)

Scls(.)

S(.)

(h,w,1)
(h,w,1)

(H
, W

, 1
)

Original Image Foveated
Segmentation

Saliency
DNN

Segmentation
DNN

Classification
DNN

FSNet Training Strategy

(c)(b)(a)

Saliency
DNN

Segmentation
DNN

Classification
DNN

Step 1 Step 2

2
3
1
2

0

2
0

2 2
3
3

5

2
3
1
2

0

2
0

2 2
3
3

5

s5 k5 v5

(a) (b)

1
2
3
1
2

0

2
3

2 2
3
0

5
64

9 6957

su
m

s=

s1

s2

k5 v5

k1 v1

s5

k2 v2

s4

KV
cache

Importance
scores

x4

x4

k4 v4

WK WV

(c)

head 1

head 3
head 2

s1

s2

k3 v3

k1 v1

s3

k2 v2

s4

KV
cache

Importance
scores

x4

LLM
Intermediate

LLM

Post-training
Quantization

Outlier
Smoothing

Output
LLM

21

8.22

3.61 6.36 6.92 11.40

6.79 1.64 10.57 0.54

EM L1 L3L2A3FR-R
esNet
(CPU) 0 28.3

Latency
(ms)

3DGS
(GPU) Preprocess R1 R3

28.80

R2 R4

5.38 5.57 5.13 5.56 4.13

11.4 5.23 2.86 1.71 1.44

L1 L3 L4 L5L2

27.9

Latency
(ms)

3DGS
without SIR

(GPU) Preprocess R1

0

0

Preprocess

1.28
29.3

R2 R3 R4 R5

R1 R2 R3 R4
11.4 5.28 3.59 6.07 1.06

27.4

A3FR-ViT
(CPU)

3DGS
with SIR

(GPU)

EM

4.00 4.26 4.51 4.48 3.95

8.48 6.54 2.49 3.19 0.56

L1 L3 L4 L5L2
A3FR-

ViT
(CPU)

0 22.1

Latency
(ms)

3DGS
(GPU) Preprocess R1

22.70

R2 R3 R4

EM

(b)(a) (c)

Figure 12: (a) Latency breakdown of A3FR framework. For 3DGS, the gray bar represents the preprocessing latency, while the
colored bars labeled R1 to R4 indicate the latencies for each rendering round. Both individual and cumulative latencies are
displayed. For ViT, the gray bar represents the patch embedding latency, and the colored bars labeled L1 to L5 correspond to the
processing latency at each local exit point. Red arrows illustrate the dependency of each 3DGS rendering round on the results
from the corresponding local exit of A3FR-ViT. (b) Latency breakdown with ResNet-based Model as the gaze tracking network.
(c) Impact of speculative incremental rendering on the overall latency.

50

40

30
20la

te
nc

y
(m

s)

tru
ck tra

in

drjo
hnso

n

playro
om

72
0P

42
49

36
41 38

45

27
32

tru
ck tra

in

drjo
hnso

n

playro
om

70

60
50

la
te

nc
y

(m
s)

10
80

P

40
30

55

67

47
56

65

51

38
48

90
80
70

la
te

nc
y

(m
s)

60
50

100

tru
ck tra

in

drjo
hnso

n

playro
om

14
40

P74

91

64

79
70

91

53

68

A3FR A3FR w/o AMR
21

18

15

la
te

nc
y

(m
s)

72
0P

20

12

tru
ck tra

in

drjo
hnso

n

playro
om

21
1819 19

20

1314

26

22

18

la
te

nc
y

(m
s)

14

10
80

P

tru
ck tra

in

drjo
hnso

n

playro
om

23
25

21
23 23

25

17
18

35

30

25

la
te

nc
y

(m
s)

20

14
40

P
tru

ck tra
in

drjo
hnso

n

playro
om

30
33

27
30 29

33

22
25

(b)

(a)

Figure 13: (a) Ablation study of AMR strategies. A3FR ren-
dering latencies are shown in red and those without AMR
are shown in grey. (b) Same as (a), but run on the machine
with reduced GPU clock frequency and CUDA cores to match
Jetson NX Orin 16GB.

artifacts in foveated 3D Gaussian Splatting rendering. The primary
objective of the study was to quantitatively assess the rendering
quality achieved by our A3FR framework (Sections 3.3 and 3.4) and
to validate its potential to deliver high-quality visual experiences
under gaze-tracked conditions. This objective was met by demon-
strating that participants could not reliably distinguish between
the A3FR and full-resolution rendering methods, confirming that
the overall perceptual quality remains uncompromised.

A total of eight participants were recruited for the experiment,
ensuring a representative sample for evaluating the method. As
shown in Figure 15, during the experiment, each participants re-
mained seated and observed the stimuli via a HMD, the Meta Quest
Pro [56]. Interaction during the study was facilitated through a
standard keyboard interface, providing a uniform and straightfor-
ward means of navigating between stimuli. The stimuli comprised
images rendered from various scenes using 3DGS. Participants were
instructed to perform a two-interval forced-choice (2IFC) task [72],
a widely used methodology for assessing visual preferences. In
each trial, participants were presented with rendered images ap-
plied to the same scene: (1) the reference image, from the ground
truth dataset of 3DGS, and (2) two test images, labeled t1 and t2,
rendered using different methods. One of the test images is gen-
erated using our A3FR approach with AMR, which incorporates a
pre-defined fixed point to simulate the gaze direction. The other

Figure 14: Sample images from 20 views of 4 scenes.

test image depicts a fully rendered scene using 3DGS without gaze-
tracking. These two rendering methods, referred to as m1 (A3FR)
and m2 (FRR), provides a basis for evaluating the impact of TFR on
perceived visual quality.

During each trial, t1 and t2, which depicted the same visual scene,
were randomly paired with m1 and m2 to eliminate order effects or
potential bias. Participants were allowed to freely switch among t1,
t2, and the reference image using the keyboard, enabling them to
carefully assess and compare the visual quality of the test images.

To simulate realistic gaze-tracking conditions, participants were
instructed to focus on the marked pre-defined fixed point (as shown
in Figure 14) throughout the comparison and were required to make
their judgments within a 10-second time frame. As noted in Sec-
tion 2.1, the typical duration of an eye fixation ranges from tens
of milliseconds to several seconds [16]. To accommodate the brief
delay caused by switching between image pairs and the subse-
quent visual recovery period, we extended the fixation duration
to 10 seconds as the trial time. These constraints were designed to
ensure that the decision-making process closely mirrored the time-
sensitive dynamics of real-time gaze-tracked rendering systems.

After observing both test images at least once, participants were
asked to select the test image they perceived as having higher visual
quality. A total of 20 distinct image pairs (sample images shown
in Figure 14), rendered from 4 different scenes, were presented to
each participant, resulting in 20 trials per participant. This design
provided a robust dataset for analyzing user preferences and vi-
sual performance across various scenarios. The results of the user

11

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Xin et al.

Figure 15: Participants are
conducting the user study
on the Quest Pro.

User 1
User 2
User 3
User 4
User 5
User 6
User 7
User 8

Total

0% 20% 40% 60% 80% 100%

TFR Full Res

Figure 16: Selection results
from the participants.

study are illustrated in Figure 16. Across all participants, the TFR
within our A3FR framework was selected 49.4%±8.2% of the time
compared to the baseline rendering method, demonstrating that
our rendering method maintains visual quality and user experience
without significant degradation compared to the baseline method,
effectively avoiding perceivable decline in image quality or overall
visual satisfaction. This outcome underscores the practicality of the
A3FR framework for real-world applications in foveated rendering
systems.

5 Conclusions
In this work, we propose a collaborative execution framework,
A3FR, that performs foveated rendering and gaze tracking in par-
allel to reduce the overall processing latency in AR/VR systems.
We further introduce A3FR-ViT, an efficient gaze-tracking neural
network that enables early estimation of gaze direction and facili-
tates parallel processing with 3DGS rendering. A3FR significantly
reduces rendering latency while maintaining equal visual quality
validated by our user study. Experimental results demonstrate its
performance across various software and hardware settings. This
framework paves the way for more efficient and responsive render-
ing systems in VR applications.

References
[1] [n. d.]. NVIDIA Jetson Orin. https://www.nvidia.com/en-us/autonomous-

machines/embedded-systems/jetson-orin/.
[2] [n. d.]. What is Mobile Industry Processor Interface (MIPI) Proto-

col? https://www.synopsys.com/blogs/chip-design/what-is-mobile-industry-
processor-interface-protocol.html

[3] Abdullah M Al-Ansi, Mohammed Jaboob, Askar Garad, and Ahmed Al-Ansi. 2023.
Analyzing augmented reality (AR) and virtual reality (VR) recent development
in education. Social Sciences & Humanities Open 8, 1 (2023), 100532.

[4] Rachel Albert, Anjul Patney, David Luebke, and Joohwan Kim. 2017. Latency
requirements for foveated rendering in virtual reality. ACM Transactions on
Applied Perception (TAP) 14, 4 (2017), 1–13.

[5] Anastasios N Angelopoulos, Julien NP Martel, Amit PS Kohli, Jorg Conradt, and
Gordon Wetzstein. 2020. Event based, near eye gaze tracking beyond 10,000 hz.
arXiv preprint arXiv:2004.03577 (2020).

[6] Rishi Athavale, Lakshmi Sritan Motati, and Rohan Kalahasty. 2022. One Eye is
All You Need: Lightweight Ensembles for Gaze Estimation with Single Encoders.
arXiv:2211.11936 [cs.CV] https://arxiv.org/abs/2211.11936

[7] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo
Martin-Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale Repre-
sentation for Anti-Aliasing Neural Radiance Fields. In ICCV. 5835–5844.

[8] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter
Hedman. 2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields.
In CVPR. 5460–5469.

[9] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter
Hedman. 2023. Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields. In
ICCV. 19697–19705.

[10] Marsha J. Berger and Joseph Oliger. 1984. Adaptive Mesh Refinement for
Hyperbolic Partial Differential Equations. J. Comput. Phys. 53 (1984), 484.
https://doi.org/10.1016/0021-9991(84)90073-1

[11] Fergus W Campbell and Robert H Wurtz. 1978. Saccadic omission: why we do
not see a grey-out during a saccadic eye movement. Vision research 18, 10 (1978),
1297–1303.

[12] Aayush K. Chaudhary, Rakshit Kothari, Manoj Acharya, Shusil Dangi, Nitinraj
Nair, Reynold Bailey, Christopher Kanan, Gabriel Diaz, and Jeff B. Pelz. 2019.
RITnet: Real-time Semantic Segmentation of the Eye for Gaze Tracking. In 2019
IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). IEEE.
https://doi.org/10.1109/iccvw.2019.00568

[13] Rajeswari Chengoden, Nancy Victor, Thien Huynh-The, Gokul Yenduri, Rutvij H
Jhaveri, Mamoun Alazab, Sweta Bhattacharya, Pawan Hegde, Praveen Ku-
mar Reddy Maddikunta, and Thippa Reddy Gadekallu. 2023. Metaverse for
healthcare: a survey on potential applications, challenges and future directions.
IEEE Access 11 (2023), 12765–12795.

[14] Woranipit Chidsin, Yanlei Gu, and Igor Goncharenko. 2021. AR-based navigation
using RGB-D camera and hybrid map. Sustainability 13, 10 (2021), 5585.

[15] Alexey Dosovitskiy. 2020. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[16] Andrew T Duchowski and Andrew T Duchowski. 2017. Eye tracking methodology:
Theory and practice. Springer.

[17] Kara J Emery, Marina Zannoli, JamesWarren, Lei Xiao, and Sachin S Talathi. 2021.
OpenNEEDS: A dataset of gaze, head, hand, and scene signals during exploration
in open-ended VR environments. In ACM Symposium on Eye Tracking Research
and Applications. 1–7.

[18] Jasper H Fabius, Alessio Fracasso, Tanja CW Nijboer, and Stefan Van der Stigchel.
2019. Time course of spatiotopic updating across saccades. Proceedings of the
National Academy of Sciences 116, 6 (2019), 2027–2032.

[19] Yu Feng, Nathan Goulding-Hotta, Asif Khan, Hans Reyserhove, and Yuhao Zhu.
2022. Real-Time Gaze Tracking with Event-Driven Eye Segmentation. In 2022
IEEE Conference on Virtual Reality and 3D User Interfaces (VR). 399–408. https:
//doi.org/10.1109/VR51125.2022.00059

[20] Stephan J Garbin, Yiru Shen, Immo Schuetz, Robert Cavin, Gregory Hughes, and
Sachin S Talathi. 2019. Openeds: Open eye dataset. arXiv preprint arXiv:1905.03702
(2019).

[21] Jaris Gerup, Camilla B Soerensen, and Peter Dieckmann. 2020. Augmented reality
and mixed reality for healthcare education beyond surgery: an integrative review.
International journal of medical education 11 (2020), 1.

[22] Antonin Gilles, Pierre Le Gargasson, Grégory Hocquet, and Patrick Gioia. 2023.
Holographic near-eye display with real-time embedded rendering. In SIGGRAPH
Asia 2023 Conference Papers. 1–10.

[23] Dan Witzner Hansen and Qiang Ji. 2010. In the Eye of the Beholder: A Survey of
Models for Eyes and Gaze. IEEE Transactions on Pattern Analysis and Machine
Intelligence 32, 3 (2010), 478–500. https://doi.org/10.1109/TPAMI.2009.30

[24] Tairan He, Zhengyi Luo, Xialin He, Wenli Xiao, Chong Zhang, Weinan Zhang,
Kris Kitani, Changliu Liu, and Guanya Shi. 2024. OmniH2O: Universal and
Dexterous Human-to-Humanoid Whole-Body Teleoperation and Learning. arXiv
preprint arXiv:2406.08858 (2024).

12

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.synopsys.com/blogs/chip-design/what-is-mobile-industry-processor-interface-protocol.html
https://www.synopsys.com/blogs/chip-design/what-is-mobile-industry-processor-interface-protocol.html
https://arxiv.org/abs/2211.11936
https://arxiv.org/abs/2211.11936
https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/10.1109/iccvw.2019.00568
https://doi.org/10.1109/VR51125.2022.00059
https://doi.org/10.1109/VR51125.2022.00059
https://doi.org/10.1109/TPAMI.2009.30

A3FR: Agile 3D Gaussian Splatting with Incremental Gaze Tracked Foveated Rendering in Virtual Reality ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

[25] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Dret-
takis, and Gabriel Brostow. 2018. Deep blending for free-viewpoint image-
based rendering. ACM Trans. Graph. 37, 6, Article 257 (Dec. 2018), 15 pages.
https://doi.org/10.1145/3272127.3275084

[26] Meta Platform Inc. 2022. Gaze-tracked Foveated Rendering in Meta Quest
Pro. https://developers.meta.com/horizon/blog/save-gpu-with-eye-tracked-
foveated-rendering/.

[27] Ye-Joon Jo, Jun-Seok Choi, Jin Kim, Hyo-Joon Kim, and Seong-Yong Moon. 2021.
Virtual reality (VR) simulation and augmented reality (AR) navigation in orthog-
nathic surgery: a case report. Applied Sciences 11, 12 (2021), 5673.

[28] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.
2023. 3d gaussian splatting for real-time radiance field rendering. ACM Trans.
Graph. 42, 4 (2023), 139–1.

[29] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.
2023. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM TOG
42, 4 (7 2023).

[30] Joohwan Kim, Michael Stengel, Alexander Majercik, Shalini De Mello, David
Dunn, Samuli Laine, Morgan McGuire, and David Luebke. 2019. NVGaze: An
Anatomically-Informed Dataset for Low-Latency, Near-Eye Gaze Estimation. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3290605.3300780

[31] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Tanks and
temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. 36,
4, Article 78 (July 2017), 13 pages. https://doi.org/10.1145/3072959.3073599

[32] Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Mengshu Sun, Wei Niu,
Xuan Shen, Geng Yuan, Bin Ren, Minghai Qin, Hao Tang, and Yanzhi Wang.
2022. SPViT: Enabling Faster Vision Transformers via Soft Token Pruning.
arXiv:2112.13890 [cs.CV] https://arxiv.org/abs/2112.13890

[33] Eileen Kowler. 2011. Eye movements: The past 25 years. Vision research 51, 13
(2011), 1457–1483.

[34] Bernard C Kress. 2020. Optical architectures for augmented-, virtual-, and mixed-
reality headsets. (No Title) (2020).

[35] Yuna Kwak, Eric Penner, Xuan Wang, Mohammad R Saeedpour-Parizi, Olivier
Mercier, XiuyunWu, Scott Murdison, and Phillip Guan. 2024. Saccade-Contingent
Rendering. In ACM SIGGRAPH 2024 Conference Papers. 1–9.

[36] Philippe Lancheres and Mohamed Hafed. 2019. The MIPI C-PHY standard: A
generalized multiconductor signaling scheme. IEEE Solid-State Circuits Magazine
11, 2 (2019), 69–77.

[37] Steven M LaValle, Anna Yershova, Max Katsev, and Michael Antonov. 2014. Head
tracking for the Oculus Rift. In 2014 IEEE international conference on robotics and
automation (ICRA). IEEE, 187–194.

[38] Pil-Ho Lee and Young-Chan Jang. 2019. A 6.84 Gbps/lane MIPI C-PHY transceiver
bridge chip with level-dependent equalization. IEEE Transactions on Circuits and
Systems II: Express Briefs 67, 11 (2019), 2672–2676.

[39] Bin Li, Hong Fu, Desheng Wen, and WaiLun LO. 2018. Etracker: A Mobile Gaze-
Tracking System with Near-Eye Display Based on a Combined Gaze-Tracking
Algorithm. Sensors 18, 5 (2018). https://doi.org/10.3390/s18051626

[40] Weikai Lin, Yu Feng, and Yuhao Zhu. 2024. MetaSapiens: Real-Time Neural
Rendering with Efficiency-Aware Pruning and Accelerated Foveated Rendering.
https://doi.org/10.1145/3669940.3707227 arXiv:2407.00435 [cs.GR]

[41] Chiao Liu, Lyle Bainbridge, Andrew Berkovich, Song Chen, Wei Gao, Tsung-
Hsun Tsai, Kazuya Mori, Rimon Ikeno, Masayuki Uno, Toshiyuki Isozaki, et al.
2020. A 4.6 𝜇m, 512× 512, ultra-low power stacked digital pixel sensor with
triple quantization and 127dB dynamic range. In 2020 IEEE International Electron
Devices Meeting (IEDM). IEEE, 16–1.

[42] Wenxuan Liu, Budmonde Duinkharjav, Qi Sun, and Sai Qian Zhang. 2025. Foveal-
net: Advancing ai-driven gaze tracking solutions for efficient foveated rendering
in virtual reality. IEEE Transactions on Visualization and Computer Graphics
(2025).

[43] Wenxuan Liu, Budmonde Duinkharjav, Qi Sun, and Sai Qian Zhang. 2025. Foveal-
Net: Advancing AI-Driven Gaze Tracking Solutions for Optimized Foveated
Rendering System Performance in Virtual Reality. IEEE Transactions on Visual-
ization and Computer Graphics (IEEE VR) (2025).

[44] Frank Löffler, Joshua Faber, Eloisa Bentivegna, Tanja Bode, Peter Diener, Roland
Haas, Ian Hinder, Bruno C Mundim, Christian D Ott, Erik Schnetter, et al. 2012.
The Einstein Toolkit: a community computational infrastructure for relativistic
astrophysics. Classical and Quantum Gravity 29, 11 (2012), 115001.

[45] Conny Lu, Praneeth Chakravarthula, Kaihao Liu, Xixiang Liu, Siyuan Li, and
Henry Fuchs. 2022. Neural 3D Gaze: 3D Pupil Localization and Gaze Tracking
based on Anatomical Eye Model and Neural Refraction Correction. In 2022 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR). 375–383.
https://doi.org/10.1109/ISMAR55827.2022.00053

[46] Feng Lu, Takahiro Okabe, Yusuke Sugano, and Yoichi Sato. 2011. A Head Pose-
free Approach for Appearance-based Gaze Estimation. In British Machine Vision
Conference. https://api.semanticscholar.org/CorpusID:7733236

[47] Henna Mäkinen, Elina Haavisto, Sara Havola, and Jaana-Maija Koivisto. 2022.
User experiences of virtual reality technologies for healthcare in learning: an

integrative review. Behaviour & Information Technology 41, 1 (2022), 1–17.
[48] Rados Mantiuk, Bartosz Bazyluk, and Anna Tomaszewska. 2011. Gaze-Dependent

depth-of-field effect rendering in virtual environments. In Proceedings of the
Second International Conference on Serious Games Development and Applications.
Springer-Verlag, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23834-
5_1

[49] Ethel Matin. 1974. Saccadic suppression: a review and an analysis. Psychological
bulletin 81, 12 (1974), 899.

[50] Pier Luigi Mazzeo, Dilan D’Amico, Paolo Spagnolo, and Cosimo Distante. 2021.
Deep Learning based Eye gaze estimation and prediction. In 2021 6th International
Conference on Smart and Sustainable Technologies (SpliTech). 1–6. https://doi.org/
10.23919/SpliTech52315.2021.9566413

[51] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2020. Nerf: Representing scenes as neural radiance
fields for view synthesis. In ECCV. 405–421.

[52] Cristina Palmero, Abhishek Sharma, Karsten Behrendt, Kapil Krishnakumar,
Oleg V. Komogortsev, and Sachin S. Talathi. 2020. OpenEDS2020: Open Eyes
Dataset. arXiv:2005.03876 [cs.CV] https://arxiv.org/abs/2005.03876

[53] Junrui Pan and Timothy G Rogers. [n. d.]. CRISP: Concurrent Rendering and
Compute Simulation Platform for GPUs. ([n. d.]).

[54] Anjul Patney, Joohwan Kim, Marco Salvi, Anton Kaplanyan, Chris Wyman, Nir
Benty, Aaron Lefohn, andDavid Luebke. 2016. Perceptually-based foveated virtual
reality. In ACM SIGGRAPH 2016 Emerging Technologies (Anaheim, California)
(SIGGRAPH ’16). Association for Computing Machinery, New York, NY, USA,
Article 17, 2 pages. https://doi.org/10.1145/2929464.2929472

[55] Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir
Benty, David Luebke, and Aaron Lefohn. 2016. Towards foveated rendering for
gaze-tracked virtual reality. ACM Trans. Graph. 35, 6 (2016). https://doi.org/10.
1145/2980179.2980246

[56] Meta Quest Pro. 2022. https://www.meta.com/quest/quest-pro/tech-specs/#tech-
specs.

[57] DA Robinson. 1964. The mechanics of human saccadic eye movement. The
Journal of physiology 174, 2 (1964), 245.

[58] Mohammadreza Saed, Yuan Hsi Chou, Lufei Liu, Tyler Nowicki, and Tor M.
Aamodt. 2022. Vulkan-Sim: A GPU Architecture Simulator for Ray Tracing.
In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO).
263–281. https://doi.org/10.1109/MICRO56248.2022.00027

[59] Rahul Singh, Muhammad Huzaifa, Jeffrey Liu, Anjul Patney, Hashim Sharif, Yifan
Zhao, and Sarita Adve. 2023. Power, Performance, and Image Quality Tradeoffs in
Foveated Rendering. In 2023 IEEE Conference Virtual Reality and 3D User Interfaces
(VR). 205–214. https://doi.org/10.1109/VR55154.2023.00036

[60] Rahul Singh, Muhammad Huzaifa, Jeffrey Liu, Anjul Patney, Hashim Sharif, Yifan
Zhao, and Sarita Adve. 2023. Power, performance, and image quality tradeoffs in
foveated rendering. In 2023 IEEE Conference Virtual Reality and 3D User Interfaces
(VR). IEEE, 205–214.

[61] Yusuke Sugano, Yasuyuki Matsushita, and Yoichi Sato. 2014. Learning-by-
Synthesis for Appearance-Based 3D Gaze Estimation. In 2014 IEEE Conference
on Computer Vision and Pattern Recognition. 1821–1828. https://doi.org/10.1109/
CVPR.2014.235

[62] Xiaoyu Sun, Xiaochen Peng, Sai Zhang, Jorge Gomez, Win-San Khwa, Syed
Sarwar, Ziyun Li, Weidong Cao, Zhao Wang, Chiao Liu, et al. 2024. Estimating
Power, Performance, and Area for On-Sensor Deployment of AR/VR Workloads
Using an Analytical Framework. ACM Transactions on Design Automation of
Electronic Systems (2024).

[63] Lech Świrski and Neil A. Dodgson. 2013. A fully-automatic, temporal approach
to single camera, glint-free 3D eye model fitting [Abstract]. In Proceedings of
ECEM 2013 (Lund, Sweden). http://www.cl.cam.ac.uk/research/rainbow/projects/
eyemodelfit/

[64] Khaled Takrouri, Edward Causton, and Benjamin Simpson. 2022. AR technologies
in engineering education: Applications, potential, and limitations. Digital 2, 2
(2022), 171–190.

[65] HaiyuWang, Wenxuan Liu, and Sai Qian Zhang. [n. d.]. Hardware and Algorithm
Codesign for Efficient Gaze Tracking in Virtual Reality System. ([n. d.]).

[66] KangWang and Qiang Ji. 2017. Real Time Eye Gaze Tracking with 3D Deformable
Eye-Face Model. In 2017 IEEE International Conference on Computer Vision (ICCV).
1003–1011. https://doi.org/10.1109/ICCV.2017.114

[67] Thomas Westin, José Neves, Peter Mozelius, Carla Sousa, and Lara Mantovan.
2022. Inclusive AR-games for education of deaf children: Challenges and oppor-
tunities. In European Conference on Games Based Learning, Vol. 16. 597–604.

[68] Erroll Wood, Tadas Baltrušaitis, Louis-Philippe Morency, Peter Robinson, and
Andreas Bulling. 2016. A 3D Morphable Eye Region Model for Gaze Estimation.
In Computer Vision – ECCV 2016, Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling (Eds.). Springer International Publishing, Cham, 297–313.

[69] Erroll Wood, Tadas Baltrušaitis, Louis-Philippe Morency, Peter Robinson, and
Andreas Bulling. 2016. Learning an appearance-based gaze estimator from one
million synthesised images. In Proceedings of the Ninth Biennial ACM Symposium
on Eye Tracking Research & Applications (ETRA ’16). 131–138. https://doi.org/10.

13

https://doi.org/10.1145/3272127.3275084
https://developers.meta.com/horizon/blog/save-gpu-with-eye-tracked-foveated-rendering/
https://developers.meta.com/horizon/blog/save-gpu-with-eye-tracked-foveated-rendering/
https://doi.org/10.1145/3290605.3300780
https://doi.org/10.1145/3072959.3073599
https://arxiv.org/abs/2112.13890
https://arxiv.org/abs/2112.13890
https://doi.org/10.3390/s18051626
https://doi.org/10.1145/3669940.3707227
https://arxiv.org/abs/2407.00435
https://doi.org/10.1109/ISMAR55827.2022.00053
https://api.semanticscholar.org/CorpusID:7733236
https://doi.org/10.1007/978-3-642-23834-5_1
https://doi.org/10.1007/978-3-642-23834-5_1
https://doi.org/10.23919/SpliTech52315.2021.9566413
https://doi.org/10.23919/SpliTech52315.2021.9566413
https://arxiv.org/abs/2005.03876
https://arxiv.org/abs/2005.03876
https://doi.org/10.1145/2929464.2929472
https://doi.org/10.1145/2980179.2980246
https://doi.org/10.1145/2980179.2980246
https://www.meta.com/quest/quest-pro/tech-specs/#tech-specs
https://www.meta.com/quest/quest-pro/tech-specs/#tech-specs
https://doi.org/10.1109/MICRO56248.2022.00027
https://doi.org/10.1109/VR55154.2023.00036
https://doi.org/10.1109/CVPR.2014.235
https://doi.org/10.1109/CVPR.2014.235
http://www.cl.cam.ac.uk/research/rainbow/projects/eyemodelfit/
http://www.cl.cam.ac.uk/research/rainbow/projects/eyemodelfit/
https://doi.org/10.1109/ICCV.2017.114
https://doi.org/10.1145/2857491.2857492
https://doi.org/10.1145/2857491.2857492

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Xin et al.

1145/2857491.2857492
[70] Zhiwen Yan, Chen Li, and Gim Hee Lee. 2023. NeRF-DS: Neural Radiance Fields

for Dynamic Specular Objects. In CVPR. 8285–8295.
[71] Jiannan Ye, Anqi Xie, Susmija Jabbireddy, Yunchuan Li, Xubo Yang, and Xiaoxu

Meng. 2022. Rectangular Mapping-based Foveated Rendering. In 2022 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR). 756–764. https://doi.
org/10.1109/VR51125.2022.00097

[72] Yaffa Yeshurun, Marisa Carrasco, and Laurence T Maloney. 2008. Bias and
sensitivity in two-interval forced choice procedures: Tests of the difference model.
Vision research 48, 17 (2008), 1837–1851.

[73] Yuk-Hoi Yiu, Moustafa Aboulatta, Theresa Raiser, Leoni Ophey, Virginia L.
Flanagin, Peter zu Eulenburg, and Seyed-Ahmad Ahmadi. 2019. DeepVOG:
Open-source pupil segmentation and gaze estimation in neuroscience using
deep learning. Journal of Neuroscience Methods 324 (2019), 108307. https:
//doi.org/10.1016/j.jneumeth.2019.05.016

[74] Haoran You, Yang Zhao, Cheng Wan, Zhongzhi Yu, Yonggan Fu, Jiayi Yuan,
Shang Wu, Shunyao Zhang, Yongan Zhang, Chaojian Li, et al. 2023. EyeCoD:
Eye Tracking System Acceleration via FlatCam-Based Algorithm and Hardware
Co-Design. IEEE Micro 43, 4 (2023), 88–97.

[75] Baoheng Zhang, Yizhao Gao, Jingyuan Li, and Hayden Kwok-Hay So. 2024. Co-
designing a Sub-millisecond Latency Event-based Eye Tracking System with
Submanifold Sparse CNN. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 5771–5779.

[76] Tongyu Zhang, Yiran Shen, Guangrong Zhao, Lin Wang, Xiaoming Chen, Lu
Bai, and Yuanfeng Zhou. 2024. Swift-Eye: Towards Anti-blink Pupil Tracking for
Precise and Robust High-Frequency Near-Eye Movement Analysis with Event

Cameras. IEEE Transactions on Visualization and Computer Graphics 30, 5 (2024),
2077–2086. https://doi.org/10.1109/TVCG.2024.3372039

[77] Weiqun Zhang, Andrew Myers, Kevin Gott, Ann Almgren, and John Bell. 2021.
AMReX: Block-structured adaptive mesh refinement for multiphysics applica-
tions. The International Journal of High Performance Computing Applications 35,
6 (2021), 508–526.

[78] Xucong Zhang, Yusuke Sugano, and Andreas Bulling. 2019. Evaluation of
Appearance-Based Methods and Implications for Gaze-Based Applications. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
ACM. https://doi.org/10.1145/3290605.3300646

[79] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. 2015.
Appearance-based gaze estimation in the wild. In 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). 4511–4520. https://doi.org/10.1109/
CVPR.2015.7299081

[80] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. 2017. MPI-
IGaze: Real-World Dataset and Deep Appearance-Based Gaze Estimation.
arXiv:1711.09017 [cs.CV] https://arxiv.org/abs/1711.09017

[81] Ziliang Zhang, Zexin Li, Hyoseung Kim, and Cong Liu. 2024. BOXR: Body
and head motion Optimization framework for eXtended Reality. arXiv preprint
arXiv:2410.13084 (2024).

[82] Yiwei Zhao, Ziyun Li, Win-San Khwa, Xiaoyu Sun, Sai Qian Zhang, Syed Shakib
Sarwar, Kleber Hugo Stangherlin, Yi-Lun Lu, Jorge Tomas Gomez, Jae-Sun Seo,
et al. 2024. Neural Architecture Search of Hybrid Models for NPU-CIM Hetero-
geneous AR/VR Devices. arXiv preprint arXiv:2410.08326 (2024).

Received 28 February 2025; accepted 8 April 2025

14

https://doi.org/10.1145/2857491.2857492
https://doi.org/10.1109/VR51125.2022.00097
https://doi.org/10.1109/VR51125.2022.00097
https://doi.org/10.1016/j.jneumeth.2019.05.016
https://doi.org/10.1016/j.jneumeth.2019.05.016
https://doi.org/10.1109/TVCG.2024.3372039
https://doi.org/10.1145/3290605.3300646
https://doi.org/10.1109/CVPR.2015.7299081
https://doi.org/10.1109/CVPR.2015.7299081
https://arxiv.org/abs/1711.09017
https://arxiv.org/abs/1711.09017

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Oculomotor Behavior in Visual Perception
	2.2 Foveated Rendering
	2.3 Neural Rendering
	2.4 Eye-tracking

	3 Methods
	3.1 Overview
	3.2 Design of Gaze Tracking Neural Network
	3.3 A3FR Incremental Rendering Scheme
	3.4 AMR-based Rendering Strategy of A3FR
	3.5 Implementation Details
	3.6 Summary

	4 Experiments
	4.1 Settings
	4.2 Performance on Gaze Tracking
	4.3 A3FR Latency Evaluation
	4.4 Impact of Gaze-tracking Network
	4.5 Effect of Speculative Incremental Rendering
	4.6 Impact of AMR
	4.7 User Study

	5 Conclusions
	References

