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Abstract
Virtual reality (VR) plays a crucial role in advancing immersive, in-
teractive experiences that transform learning, work, and entertain-
ment by enhancing user engagement and expanding possibilities
across various fields. Image rendering is one of the most crucial ap-
plication in VR, as it produces high-quality, realistic visuals that are
vital for maintaining immersive user experiences and preventing
visual discomfort or motion sickness. However, the cost of image
rendering in VR environment is considerable, primarily due to the
demands of high-quality visual experiences from users. This chal-
lenge is even greater in real-time applications, where maintaining
low latency further increases the complexity of the rendering pro-
cess. On the other hand, VR devices, such as head-mounted displays
(HMDs), are intrinsically linked to human behavior, using insights
from perception and cognition to enhance user experience.

In this work, we aim to reduce the high computational costs of
the rendering process in VR by leveraging natural human eye dy-
namics and focusing on processing only where you look (POLO). This
involves co-optimizing AI algorithms with underlying hardware
for greater efficiency. We introduce POLONet, an efficient multitask
deep learning framework designed to track human eye movements
with minimal latency. Integrated with the POLO accelerator as a
plug-in for VR HMD SoCs, this approach significantly lowers image
rendering costs, achieving up to a 3.9× reduction in end-to-end
latency compared to the latest gaze tracking methods.

CCS Concepts
• Computer systems organization → Real-time system ar-
chitecture; • Computing methodologies→ Tracking; Virtual
reality; Mixed / augmented reality; Perception; Rendering.
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1 Introduction
Virtual Reality (VR) is transforming how we engage with digi-
tal content by providing immersive experiences that seamlessly
blend physical and virtual environments. Its impact spans mul-
tiple domains, including entertainment and gaming [25], educa-
tion [4, 54, 102, 107], healthcare [19, 41, 73, 85], and more [20, 52].
By enabling fully immersive environments, VR allows users to
explore scenarios in entirely new ways.

Image rendering is arguably the most critical application in VR
systems, as it directly impacts the realism and immersion of the
virtual environment. High-resolution, low-latency rendering is es-
sential for a seamless, responsive experience. Conversely, poor
rendering quality or visual delays can lead to discomfort and di-
minished user engagement, including motion sickness. However,
rendering high-resolution frames on standalone VR devices can
result in significant latency. Traditionally, mobile VR rendering
engines have relied on simple rasterization pipelines with limited
compute shader support. Nevertheless, ray tracing-based rendering
techniques have gained popularity [8, 79, 88, 93, 103] for improving
real-time rendering in next-gen standalone VR headsets. Notably,
recent advancements have enabled the integration of ray tracing
features in Snapdragon GPUs [87, 88] that are increasingly being
adopted in VR platforms [89]. This progress allows mobile applica-
tions like War Thunder Mobile [88] to deliver enhanced visual ex-
periences despite high computational demands. To investigate this,
we perform simulations of image rendering based on ray tracing
across various scenes from LumiBench [68] using Vulkan-Sim [91],
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Figure 1: Rendering latencies under different resolutions.

a specialized GPU simulator for image rendering. Vulkan-Sim is
configured to emulate the Jetson Orin NX edge GPU [1], which has
been frequently used in prior research to model rendering perfor-
mance in VR devices [42, 45, 82, 91, 117, 124]. As shown in Figure 1,
rendering times range from 20 ms to 700 ms depending on the
scene and resolution, leading to average latencies of 80 ms, 155 ms,
and 282 ms for resolutions of 720P, 1080P, and 1440P, respectively.
However, these latencies fall short of meeting the requirements for
a smooth visual experience, as earlier studies indicate a per-frame
rendering latency of 50–70 ms is necessary [5].

In the realm of VR, the human eyes serve as the primary medium
through which users engage with the virtual environment, mak-
ing gaze tracking the most crucial component for the majority
of VR applications. Human visual acuity varies across the visual
field. The fovea, the central region of the retina, is responsible for
our sharpest vision. As we move away from the fovea, our visual
acuity decreases rapidly. Foveated rendering leverages this phe-
nomenon by allocating more computational resources to the fovea
while reducing detail in the periphery. This technique significantly
enhances VR system performance by lowering the rendering work-
load without compromising the perceived visual quality, making it
a critical innovation in VR [5, 40, 83, 104].

In addition to foveated behavior, the human eye also exhibits
saccadic motion. During saccadic motion, the eye rapidly jumps
from one point of focus to another, allowing us to scan our sur-
roundings efficiently. These quick movements are crucial for visual
tasks like reading or scene exploration, as they enable the brain
to gather information from different parts of the visual field in a
fraction of a second. During a saccade, the sensitivity of the visual
system undergoes a temporary reduction, a phenomenon known
as saccadic suppression [59, 76]. This change in sensitivity helps
prevent the brain from perceiving the rapid, blurred movement of
the visual field as the eyes quickly shift focus.

By leveraging insights from human gaze behavior, this paper
aims to lower the high computational costs of visual processing in
VR by Processing Only Where You Look (POLO). POLO co-optimizes
AI algorithms and underlying hardware platform for efficient image
rendering in VR. Our contributions can be summarized as follows:
• We propose a deep learning framework termed POLONet,
that efficiently and accurately detects both gaze direction
and saccade occurrences. This approach involves optimizing
shared and task-specific components to ensure precise, effi-
cient performance across both tasks, resulting in enhanced
overall system performance.
• We design the POLO Accelerator, an efficient hardware pro-
cessor that functions as a plug-in for a VR device SoC. The
POLO accelerator significantly enhances the hardware ef-
ficiency of POLONet. Moreover, the predicted gaze direc-
tion, combined with the generated saccade signal, guides the
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Figure 2: (a) An example on fixation and saccade of human
eye. PS indicates the post-saccade duration. (b) An example
illustrating gaze movements within a rendered image.

rendering process in GPU, improving rendering efficiency
by adaptively reducing the rendering resolution. We also
propose an optimized task execution pattern to efficiently
schedule the operations within VR SoC.
• Evaluation results indicate that the POLO system achieves up
to a 3.9× reduction in end-to-end latency compared to exist-
ing gaze trackingmethods. In addition, it provides significant
energy savings and enhances the user visual experience, as
validated through real user studies.

2 Background
2.1 Human Eye Behavior
Human ocular motion can be divided into three principal types,
each serving a distinct function: fixation, during which the eye
remains stationary and converges on a single point; saccadic move-
ments, rapid, ballistic shifts that redirect the line of sight from one
target to another; and smooth pursuit, a continuous, slower tracking
of moving objects. Smooth pursuit occurs relatively infrequently,
whereas fixation and saccadic movements dominate everyday vi-
sual behavior, alternating in quick succession to enable both broad
scene exploration and precise focus as illustrated in Figure 2 (a).
During a fixation, the gaze remains locked on one location, and spa-
tial resolution varies across the visual field. The fovea, located at the
retinal center, provides the highest acuity thanks to its dense pack-
ing of photoreceptors. Outside this foveal region, visual sharpness
declines steeply, leaving peripheral regions markedly less sensitive
to fine spatial detail.

Moreover, humans typically execute one to three saccadic eye
movements per second [34, 58, 61], each lasting approximately
20–200 ms [90]. These rapid eye movements play a critical role
in efficiently scanning the visual environment. However, during
a saccade, the rapid displacement of the retina leads to a tempo-
rary degradation of visual input, commonly referred to as saccadic
blur [15, 76]. After the eye reaches its new point of fixation, visual
clarity is quickly restored, and the brain integrates information
from both fixation and saccadic periods to construct a coherent
and stable perceptual experience. Previous studies have demon-
strated that perceptual suppression during saccades peaks at the
moment of maximum eye velocity, leading to a reduction in stim-
ulus detectability by at least 75% [50]. This natural suppression
mechanism enables the image rendering process to be temporar-
ily paused during saccades without noticeable degradation of the
user’s visual experience [55, 70]. Figure 2 (b) shows an example
of human gaze movements within a single scene, where the gaze
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Figure 3: (a) Foveated rendering in VR device. (b) Relation
between the tracking error and the size of the foveal region.

typically fixates on multiple points, and saccades occur between
these fixation stages before shifting to next scene.

Recent research has shown that even after the gaze lands on a
new target at the end of a saccade, the brain still requires time to
stabilize the scene and adjust to the new visual input. Visual acuity
remains low for an additional 50 milliseconds [61], presenting an op-
portunity for low-resolution rendering that can save computational
resources. This period is referred to as post-saccadic duration.

2.2 Gaze-Tracked Foveated Rendering
As virtual reality gains broader adoption, the demand for rendering
high-resolution imagery on resource-limited devices, particularly
head-mounted displays (HMDs), has intensified [5, 84]. Under these
constraints, it is imperative to optimize overall system performance,
with a special focus on minimizing latency to suppress visual dis-
tortions and artifacts. When rendering falls behind user motion, a
mismatch between visual feedback and physical sensation occurs,
which can substantially degrade the immersive experience [29, 74].

Gaze-tracked foveated rendering (TFR) is a VR display strategy
that exploits real-time eye-gaze estimation, typically via deep neural
networks (DNNs), to minimize rendering latency. At each frame,
the system analyzes a single eye image to determine the user’s gaze
point, rendering the foveal region (Figure 3 (a)) at full resolution
while gradually reducing detail in the surrounding inter-foveal and
peripheral regions without introducing visible artifacts [74, 84, 113].
Figure 3 (b) presents a quantitative model of TFR, where the foveal
radius 𝑟 𝑓 (in pixels) is directly tied to the gaze-tracking error Δ𝜃
and is determined as follows:

𝑟 𝑓 = 𝑟𝑖 + 𝑐 = 𝜌𝑑 · tan(𝜃𝑖 + Δ𝜃 ) = 𝜌𝑑 tan(𝜃 𝑓 )1 (1)

where 𝜌 represents the display’s pixel density (pixels per unit
length), 𝑑 denotes the (fixed) distance from the eye to the VR
display, 𝜃𝑖 is the eccentricity angle subtended by the foveal re-
gion, and 𝜃 𝑓 = 𝜃𝑖 + Δ𝜃 is the resulting eccentricity angle that
incorporates the gaze tracking error Δ𝜃 due to inaccuracies in
the gaze tracking mechanism. The baseline foveal radius without
tracking error is 𝑟𝑖 = 𝑑 tan(𝜃𝑖 ), and the error-induced increment
is 𝑐 = 𝑑 tan(𝜃 𝑓 ) − 𝑑 tan(𝜃𝑖 ), representing the changes on foveal
region radius caused by gaze tracking error Δ𝜃 . Empirical studies
typically set 𝜃𝑖 between 5◦ and 6◦ depending on user-study results
[5, 22, 106]. In [106], the nominal foveal eccentricity 𝜃𝑖 is fixed at
5° around the gaze point, whereas the inter-foveal region extends

1This formula is obtained by assuming the gaze point lies at the center of the forward
view, representing the maximum radius of the rendering region.
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Figure 4: (a) Architecture of TFR system. (b) Normalized
breakdown of TFR system latency; illustration not to scale.

from 5° to 20°. When a user wears a head-mounted display, 𝑑 re-
mains constant, as the display is typically mounted directly on the
user’s head. From equation 1, we observe that a large gaze-tracking
error Δ𝜃 will expand the foveal and inter-foveal regions, which are
rendered at higher resolution to maintain visual quality and ensure
a seamless user experience. However, this also increases system
overhead, as rendering larger high-resolution regions requires more
computational resources.

2.3 TFR System
To implement TFR system in VR hardware, three major components
are essential, as illustrated in Figure 4 (a). These components include
a near-eye image sensor, a host SoC for visual task processing, and
an interconnection link (such as MIPI [62]). For example, in VR
HMD like the Meta Quest Pro [86], the SoC is composed of various
modules (e.g., CPU, GPU, audio processor).

A standard TFR workflow, illustrated in Figure 4 (a), proceeds
as follows: first, the image sensor captures a frame of the user’s
eye. Next, the image is preprocessed by the image signal processor
(ISP) and readout circuitry, then sent over the MIPI link to the host
processor. Upon arrival, the host SoC’s GPU runs a DNN to infer
the gaze direction. Finally, this gaze estimate is supplied to the
GPU-based foveated rendering process, which produces the VR
scene with spatially varying resolution.

Figure 4 (b) decomposes the end-to-end latency of the TFR
pipeline. Camera sensor acquisition delay 𝑇𝑠 and MIPI transmis-
sion delay 𝑇𝑐 together contribute only a small fraction of the total
latency, approximately 1ms for image sensing [7, 67, 100, 116] and
under 1ms for MIPI transfer [2, 63]. By contrast, gaze inference
latency 𝑇𝑑 and the subsequent rendering & display latency 𝑇𝑟 dom-
inate the total delay, exceeding the sensing and communication
overhead by factors of 20×–100× from [5, 96].

Due to the importance of gaze tracking latency𝑇𝑑 and rendering
latency𝑇𝑟 , in Section 4.3, we propose an efficient gaze tracking solu-
tion that produces accurate gaze tracking results with minimal Δ𝜃 ,
thereby reducing the computational cost for foveated rendering and
further minimizing 𝑇𝑟 . Additionally, in Section 4.2 and Section 4.3
we propose an optimized gaze tracking DNN design with low com-
putational cost, contributing to a reduction in 𝑇𝑑 . In Section 5, we
propose a hardware accelerator and a computational pattern aimed
at further reducing both 𝑇𝑑 and 𝑇𝑟 and energy consumption for
TFR process.
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3 Related Work
3.1 Gaze Tracking Algorithms
Gaze-tracking techniques are generally divided into model-based
and appearance-based categories [43, 121]. Model-based methods
infer the gaze vector by fitting a 3D eyeball model that captures
key anatomical features of the eye [71, 101, 105, 109]. Typically,
these methods follow two sequential steps: (1) a neural network
extracts eye features, producing a segmentation mask and uses
these features to fit a parametric geometric eye model, and (2) the
gaze direction is inferred from the parameters of the fitted eye
model [36, 38, 64, 115, 120]. Notably, EdGaze [36] reduces compu-
tational overhead by evaluating event density between consecutive
frames to bypass redundant eye segmentation, reusing previous
segmentation results instead. BlissCam [38] leverages the vision
transformer [28] to enhance the performance of eye segmentation.

Despite the high eye-segmentation accuracy reported in pre-
vious studies [16], geometric model–based gaze estimation often
inherently incurs systematic errors exceeding 2◦ relative to ground
truth. This performance degradation stems chiefly from two fac-
tors: (1) imprecise estimation in fitting the eye’s center and radius
during the eye model initialization, and (2) restrictive geometric
constraints imposed during optimization stage which limit allow-
able pupil shapes and positions, thereby amplifying the deviation
from true gaze direction [101].

By contrast, appearance-based gaze-tracking approaches operate
directly on raw eye images, learning an end-to-end mapping to gaze
direction [43, 122, 123]. These methods typically demand larger
and more diverse training datasets than model-based techniques.
Driven by the scale and complexity of required training data, a
broad spectrum of learning paradigms has emerged, including linear
regression [72], random forests [99], k–nearest neighbors (KNN)
[99, 110], and CNNs [9, 77].

3.2 Saccade Detection Algorithms
Saccade detection methods are broadly categorized into velocity-
based and dispersion-based approaches [6, 24]. Velocity-basedmeth-
ods [33, 80, 95] compute angular velocity by differentiating gaze
position signals, flagging saccades when the velocity surpasses
a predefined threshold. Some studies further refine this process
by applying polynomial fitting or neural networks to continuous
sequences of velocity and gaze data to model saccadic behavior
more accurately [13, 61]. In contrast, dispersion-based methods [92]

identify fixations by verifying that the spatial dispersion of gaze
points remains below a certain threshold, with segments exhibiting
greater dispersion classified as saccades. However, these traditional
techniques necessitate continuously running a full high-precision
gaze tracking process to obtain accurate gaze landing positions,
which incurs significant computational costs. In contrast, POLO
offers an efficient alternative by employing a small recurrent neural
network to detect saccades, as detailed in Section 4.1. Upon sac-
cade detection, the system bypasses further high-precision tracking,
substantially reducing computational load.

3.3 Gaze Tracking Implementations
Recent studies [30, 37, 38, 69] in in-sensor computing focus on im-
proving the efficiency and speed of eye tracking execution directly
within sensor hardware, minimizing data transfer to external pro-
cessors and reducing latency and power consumption. For instance,
BlissCam [38] leverages a combination of analog-domain eventifi-
cation, sampling, and in-sensor computing techniques to detect
and reuse the region of interest for gaze tracking, further reducing
the sensor-host data volume. In addition, the pixel processor array
(PPA) architecture proposed in [30, 69] can sense, store, and reason
without relying on external centralized processing units, enabling
highly parallel and localized image processing. Despite potential
performance benefits, integrating processing units into sensors
increases hardware complexity and manufacturing costs, and no
current commercial VR products have adopted this approach. Fur-
thermore, the limited computational capacity of sensors can restrict
the accuracy and reliability of advanced tracking algorithms.

3.4 DNN Pruning
Pruning is a fundamental strategy for reducing memory footprint
and computational costs during DNN inference [14, 60, 65, 66, 78,
119]. Most pruning methods focus on eliminating redundant pa-
rameters in the model weights, employing either structured or
unstructured approaches to remove redundant weights at various
levels of granularity. More recently, pruning has been extended
to intermediate token representations in ViTs [28, 53]. Examples
include SPViT [57], which employs a token selector to drop non-
critical tokens; S2ViTE [18], which leverages sparse training to
prune both tokens and attention heads; and Evo-ViT [112], which
introduces a slow–fast token evolution mechanism to retain es-
sential information. Prior studies have applied cropping to discard
irrelevant pixels from eye-region images [36]. However, performing
fine-grained pruning at the token level, such as removing tokens
corresponding to eyelashes, can further reduce input redundancy.
Unlike tokens that encode iris and pupil information, these extrane-
ous features contribute negligibly to gaze-tracking accuracy [101].
As detailed in Section 4.3, our token-wise pruning approach ranks
input tokens based on their importance (attention scores) relative
to the final gaze prediction and removes unimportant tokens, sig-
nificantly reducing computational costs with minimal impact on
accuracy. Figure 6 (a) highlights the cropping process.

4 POLO Algorithm
In this section, we discuss the POLONet for efficient gaze tracking
and saccade detection, with an overview provided in Figure 5. As
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indicated in Figure 5 (a), upon receiving an eye image, the system
first processes it through a neural network to determine if a saccade
has occurred (Section 4.1). If a saccade is detected, the saccade indi-
cator is set to 1, halting further operations. Otherwise the eye image
is compared with previous buffer frames to assess whether prior
gaze prediction results can be reused, as explained in Section 4.2. If
reuse is not feasible, the image is cropped using the approach in
Section 4.2 and then passed to the gaze tracking ViT (Figure 5 (b)),
as detailed in Sections 4.3.

4.1 Saccade Detection
The occurrence of a saccade can be detected by utilizing the fact
that the eye moves rapidly over a short period, resulting in a sig-
nificant difference between consecutive frames. The workflow for
saccade detection is illustrated in the middle part of Figure 5. At
time t, the input eye frame 𝐹 𝑡 first undergoes average pooling with
a window size of𝑀 ×𝑀 to reduce the spatial dimensions and lower
computational cost, where𝑀 is a hyperparameter that can be cali-
brated using sampled eye images within the training dataset. The
intermediate result is then binarized by comparing it to a predefined
threshold 𝛾1, assigning binary values of 1 to darker regions and
0 to brighter regions. The binary map 𝐼𝑡 is passed to the saccade
detection DNN, which includes a convolutional layer and a recur-
rent block for high-level feature extraction. Finally, a linear layer
produces a binary output indicating the presence of a saccade. The
saccade detection procedure can be formulated as:

𝑥𝑡 = Flatten
(
MaxPool(Conv(𝐼𝑡 ))

)
ℎ𝑡 = 𝛽 · ℎ𝑡−1 + 𝛼 · tanh(𝑊𝑥𝑡 +𝑈ℎ𝑡−1)
𝑠𝑡 = 𝜎 (𝑊𝑓 𝑐ℎ𝑡 + 𝑏 𝑓 𝑐 ) (2)

where ℎ𝑡 is the hidden state of the recurrent network, and 𝑠𝑡 is
a binary value indicating the occurrence of a saccade. 𝛽 and 𝛼
are learnable parameters that control the impact of the current
input and historical information. The inclusion of the recurrent
block allows the model to capture temporal information of eye
movements, enabling the detection of saccadic events by analyzing
both current and previous frames, ensuring reliable identification of
rapid saccadicmotions. If a saccade is detected, the saccade indicator
is set to 1, causing all subsequent operations to be skipped. If no
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saccade is detected, frame 𝐹 𝑡 is then analyzed for the potential to
reuse the gaze data, as outlined in Section 4.2.

4.2 Gaze Reuse and Event-based Cropping for
Efficient TFR

Eye movements are typically minimal across consecutive eye im-
ages, resulting in negligible gaze direction changes much of the
time [81, 108]. This enables reuse of the previous gaze direction
result from the gaze-tracking DNN, significantly reducing computa-
tional overhead by running the gaze tracking neural network only
when substantial changes are detected in the input eye frame.

To achieve this, we calculate the pixelwise difference between
the binary maps 𝐼𝑡 and 𝐼𝑡−1, and compare it against a predefined
threshold 𝛾2. Based on this comparison, we then decide whether to
reuse the existing gaze detection result from the previous frames
or perform a new gaze detection. The process is described in the
lower part of Figure 5.

If the previous gaze direction is not reused, the input frame 𝐹 𝑡
will be processed to identify the gaze location. It is important to
note that 𝐹 𝑡 often contains extraneous pixels, such as background
or facial muscles, which are irrelevant to gaze tracking. These
unnecessary pixels can decrease prediction accuracy and increase
computational costs due to the larger input image size. To address
this, we propose a method to eliminate the uninformative regions of
the eye image. Unlike prior methods that rely on neural networks to
identify cropping regions and introduce additional computational
and storage overhead [35], our approach is an analytical framework
designed to minimize running costs and memory usage.

Our approach begins by roughly locating the pupil, then con-
structing a bounding box with predefined dimensions centered on
it. The process is highlighted in Figure 6 (b). Since the captured eye
images by inward eye camera are typically monochromatic with
normalized pixel values ranging from 0 to 1, and the pupil is usually
darker than the surrounding sclera and iris [97], we can reuse the
output of the binarization operation 𝐼𝑡 to determine the location of
the pupil center. Specifically, we sum the 𝐼𝑡 values within a 𝑆 × 𝑆
region centered at each pixel. The pixel with the highest summeans
that it is surrounded by many white pixels, identifying it as the
center of the pupil. If more than one pixel have the same maximum
value, one is randomly chosen as the pupil center. Once the pupil
is located, a predefined bounding box, centered on the pupil, crops
the original eye image. Because VR HMDs are typically mounted
directly on the user’s head, the relative position between the eye
camera and the eye remains nearly constant, enabling easy deter-
mination of hyperparameters, such as the bounding box size and
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Figure 8: (a) Distribution of gaze errors on OpenEDS 2020
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angular errors. NVgaze results were excluded due to excessive
tracking errors and unstable performance. (b) Visualization
of the impact of gaze tracking errors on foveated rendering.

the value of𝑀 , using a small calibration dataset. The cropped input
images will be processed by the gaze tracking DNN described in
Section 4.3.

4.3 Efficient Gaze Tracking Solution
Our efficient gaze-tracking solution PoloNet integrates two com-
ponents: (1) a lightweight, token-prunable ViT backbone that min-
imizes compute and memory, and (2) a performance-aware train-
ing objective that explicitly suppresses worst-case angular errors.
These components achieve low average tracking error while sharply
bounding the error tail, ensuring foveated-rendering quality.

Informative regions crops are initially resized to a compact
(224 × 224) resolution before being fed into the gaze-tracking DNN
for direction prediction. Following the ViT design of [27], the im-
age is divided into fixed-size patches, tokenized, and enriched with
positional encodings. Our backbone consists of eight transformer
blocks, each with six self-attention heads and an embedding dimen-
sion of 384. The MLP head is modified to regress a 2-D gaze vector
(𝜃𝑥 , 𝜃𝑦). After each self-attention layer, we compute the attention
matrix 𝐴 = Softmax

(
𝑄𝐾⊤/

√︁
𝑑𝑘

)
and derive an importance score

for every token. Tokens whose maximum attention weight falls
below a threshold 𝜎 are discarded (Figure 6 (a)). Subsequent blocks
therefore process fewer tokens, shrinking intermediate activations
and FLOPs. Finally, all activations and weights are 8-bit quantized
to further cut bandwidth and storage. The complete network is
shown in Figure 7.

Meanwhile, typical gaze-tracking models minimize the average
angular error, which leaves a long-tail distribution of outliers (Fig-
ure 8 (a)). In foveated rendering, even a small portion of large errors
forces the foveal region to be enlarged (Figure 8 (b)), negating
performance gains. The experimental results reveal that most pre-
vious work has focused solely on minimizing average gaze tracking
performance, and none have optimized gaze tracking DNNs by
considering the impact of tracking error distribution in foveated
rendering applications. Tomitigate this problem, we propose a train-
ing strategy by minimizing the maximum tracking error during
training, which can be formulated as:

min max
𝑑∈𝐷𝑡𝑟𝑎𝑖𝑛

( | |𝜃𝑑 − 𝜃
𝑔

𝑑
| |2 ) (3)

Algorithm 1: POLONet Algorithm
Input: Current and previous frames 𝐹 𝑡 , 𝐹 𝑡−1, buffered gaze 𝜃𝑑 ,

pooling size𝑀 and 𝑆 , threshold 𝛾1 and 𝛾2.
𝜎 (.) returns 1 is the event inside is true, and 0 otherwise.
𝑓𝑠𝑎𝑐 (.) , 𝑓𝑔𝑎𝑧𝑒 (.) denote the saccade detection and gaze
detection ViT described in Section 4.1 and Section 4.3.
𝐻1 and 𝐻2 denote the size of the cropped image.

Output: Gaze direction
1 Initiation
2 Apply𝑀 ×𝑀 average pooling over 𝐹 𝑡 ;
3 𝐼𝑡

𝑖 𝑗
← 𝜎

(
𝐹 𝑡
𝑖 𝑗

< 𝛾1
)
;

4 if 𝑓𝑠𝑎𝑐 (𝐼𝑡 ) == 1 then
5 Saccade detect, halt rest operations.
6 else
7 if

∑
𝑖 𝑗 |𝐼𝑡𝑖 𝑗 − 𝐼𝑡−1

𝑖 𝑗
| < 𝛾2 then

8 return 𝜃𝑑 ; // Return previous gaze

9 else
10 Sum 𝑆 × 𝑆 region centered at each pixel within 𝐼𝑡 , find

the pupil center c;
11 Crop an 𝐻1 × 𝐻2 region centered at 𝑐 within 𝐹 𝑡 .

Denote the cropped region 𝐹 𝑡𝑐𝑟𝑜𝑝 ;
12 𝜃𝑑 = 𝑓𝑔𝑎𝑧𝑒 (𝐹 𝑡𝑐𝑟𝑜𝑝 ) ;
13 return 𝜃𝑑 .
14 𝐼𝑡−1 ← 𝐼𝑡 ;

where 𝜃𝑑 and 𝜃𝑔
𝑑
denote the predicted gaze direction and the ground-

truth gaze direction (in radians) for the input sample 𝑑 in the train-
ing dataset 𝐷𝑡𝑟𝑎𝑖𝑛 , respectively. To enhance training stability, the
DNN is trained using multiple batches of training samples, resulting
in Equation 4 being:

min
∑︁
𝑏∈𝐵

max
𝑑∈𝐷𝑏

𝑡𝑟𝑎𝑖𝑛

( | |𝜃𝑑 − 𝜃
𝑔

𝑑
| |2 ) (4)

where 𝐵 denotes the set of training dataset batches, and 𝐷𝑏
𝑡𝑟𝑎𝑖𝑛

represents the set of training data in batch b. However, using this
formula directly as the loss function can result in underutilization
of the training dataset, as it tends to focus on only optimizing the
sample with the highest tracking error. Empirically, we find it more
effective to optimize an approximate version of Equation 4 by re-
placing the max operation with an alternative approach, using the
approximation𝑚𝑎𝑥 (𝑥1, 𝑥2) ≈ 1

𝑁
ln(𝑒𝑁𝑥1 + 𝑒𝑁𝑥2 ). To further mini-

mize the average gaze tracking error, we incorporate a weighted
mean squared error term, scaled by a small factor 𝜆, into the overall
loss function:

∑︁
𝑏∈𝐵


1
𝑁

ln
( ∑︁
𝑑∈𝐷𝑏

𝑡𝑟𝑎𝑖𝑛

𝑒
𝑁 ∥𝜃𝑑 −𝜃

𝑔

𝑑
∥2
)
+ 𝜆

|𝐷𝑏
𝑡𝑟𝑎𝑖𝑛

|

∑︁
𝑑∈𝐷𝑏

𝑡𝑟𝑎𝑖𝑛

∥𝜃𝑑 − 𝜃
𝑔

𝑑
∥2

(5)

where 𝑁 is the scaling factor that controls the degree of the
approximation, |𝐷𝑏

𝑡𝑟𝑎𝑖𝑛
| is the size of the batch and 𝜆 represents the

relative importance of the average-error term. During the training
process, the values of 𝑁 and 𝜆 are tuned carefully to adapt to the
value distribution of the input training data to ensure the better con-
vergence of the training process. Algorithm 1 presents the complete
version of the POLONet algorithm discussed in Section 4.
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Figure 9: An overview of the POLO accelerator. POLO accelerator is integrated with the SoC of the VR HMD.

5 POLO Accelerator Design
In this section, we introduce the POLO Accelerator for efficient gaze
processing, highlighted in Figure 9, the POLO accelerator serves as
a dedicated module within the SoC of VR HMDs, consisting of three
primary components: Image Pre-processing Unit (IPU) (Section 5.1),
Computational engine (Section 5.2), and the memory subsystem.
The POLO accelerator exclusively executes POLONet, offloading
gaze processing from the GPU to reduce its workload and improve
rendering efficiency. In Section 5.3, we discuss the computational
workflow between POLO accelerator and GPU.

5.1 Image Pre-processing Unit Design
The architectural design of the IPU is illustrated on the far right of
Figure 9. The IPU includes three main data paths that sequentially
process the full-sized eye image. These paths are responsible for
binarization map generation, gaze reuse determination and pupil
center detection. The average pooling operation segments the input
image into𝑀 ×𝑀 (𝑀 = 4) pixel tiles, which are fetched from the
buffer and processed through an adder tree within the IPU. The
computed sum for each tile is compared to a scaled threshold 𝛾1 in
a comparator for binarization. To reduce latency, division in linear
interpolation is bypassed by scaling the threshold by 4 × 4 = 16,
preserving the same binarization outcome. This process assigns
binary values of 1 to darker pupil regions and 0 to other areas,
producing a binary map that is stored in the buffer for subsequent
processing, the data flow is highlighted in Figure 10 (a).

Gaze reuse is determined by comparing the previous frame’s
binary map with the current binary map, both stored in the buffer
as inputs. Then the pixel differences between these two frames are
calculated. Given that the eye image has already been binarized,
corresponding pixels from the two binary maps are efficiently pro-
cessed through an XOR gate array, producing the pixel differences
with minimal computational overhead. The event map, represent-
ing gaze shifts between frames, is then passed through an adder
tree to compute the sum of the entire map, quantifying the overall
difference between the two frames. This sum is subsequently com-
pared against a predefined threshold 𝛾2 to assess whether there is
sufficient change in gaze direction. The entire data flow is shown
in Figure 10 (b).

To precisely locate the pupil center and crop the image, a 5 × 5
window slides across the binary map, computing the sum of pixel
values within each window. The window with the highest sum is
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Figure 10: Image pre-processing data flows.

selected, and its center is designated as the pupil center. To identify
the highest sum efficiently, each calculated sum is compared with
the current highest sum stored in a register. This iterative compari-
son process, facilitated by a comparator, updates the stored highest
sum whenever a new maximum is found. Additionally, to mini-
mize unnecessary computations, the sliding window summation
is performed on the binary map only when the center pixel of the
window is 1, specifically for the white pixels that may correspond
to the pupil. This selective calculation is effective due to the sparse
distribution of white pixels, minimizing computation load while
ensuring precise detection of the pupil center. The data flow is
shown in Figure 10 (c).

To conserve hardware resources and enhance utilization, the
three tasks share components such as the adder tree and compara-
tor. This configuration allows for efficient resource reuse while
maintaining the distinct functionality of each task.

5.2 Computational Engine
The computational engine is primarily responsible for implement-
ing gaze tracking through a ViT and executing the neural network
for saccade detection. Its primary components include a 16 × 16
systolic array, with each processing element (PE) containing an
8-bit multiply-accumulator (MAC), a token selector, and a special
function unit (SFU), as illustrated in Figure 9. During operation, the
systolic array processes inputs in a staggered manner, transmitting
computed partial sums to the accumulator and SFU. The engine
employs a weight-stationary data flow approach, where weights
are pre-loaded from the weight SRAM into registers within each
PE of the systolic array, while input data is streamed sequentially
into the array. This design ensures efficient handling of data for
gaze tracking and saccade detection tasks. To facilitate transposed
matrix multiplication in ViT, we use a reconfigurable systolic ar-
ray design proposed in [118], enabling in-place transposed matrix
multiplication.
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The special function unit is responsible for executing all nonlin-
ear operations required by the ViT and saccade detection algorithms,
including softmax, layer normalization, and activation functions
such as GeLU, ReLU, and Tanh, as illustrated in Figure 9. To enhance
efficiency in the softmax operation used within ViT, the SFU incor-
porates a lookup table (LUT) to approximate the exponential func-
tion. Another LUT is allocated for square root calculations essen-
tial to layer normalization, facilitating precise normalization with
minimal computational burden. For activation functions, the SFU
accelerates GeLU and Tanh via piecewise linear approximations, bal-
ancing computational efficiency and accuracy by segmenting these
nonlinear functions into linear intervals. ReLU, specifically used in
saccade detection, is implemented through comparator-based logic,
eliminating resource-intensive operations. This streamlined SFU de-
sign supports diverse nonlinear processing with minimized power
and latency overheads, meeting the high-throughput requirements
of the accelerator.

The token selection process described in Section 4.3 is imple-
mented by the token selector, which performs pruning after every
two Transformer layers. Token importance is calculated by sum-
ming each column of the attention map after computing one head,
using an adder array. After processing all heads in a layer, the
complete importance score is compared in a comparator with a
predefined threshold 𝜂, tokens with scores below the threshold are
pruned by setting their 1-bit mask to 0, excluding them from subse-
quent computations. With the cropping algorithm implemented by
the IPU and the token-wise pruning strategy outlined in Section 4.3,
the memory footprint for storing inputs and intermediate results is
significantly minimized, allowing for a compact activation buffer
of only 128KB. The weight buffer is also configured to 128KB.

5.3 SoC Integration of POLO Accelerator
In this section, we outline how the POLO accelerator coordinates
with other components and the computational flow of the TFR pro-
cess within the SoC. The POLO accelerator is integrated with other
SoC components via the Network-on-Chip (NoC), enabling efficient
communication with the CPU, GPU, DMA, and additional compo-
nents. The computational flow of TFR is depicted in Figure 11 (a).
In the step 1, the camera captures the eye frame and sends it to the
POLO accelerator’s SRAM. Next, the processor processes the input

image to determine the gaze direction or saccade decision (Step 2),
storing the result in memory (Step 3). The CPU then instructs the
GPU to use the POLO accelerator results (Step 4), which is applied
to perform foveated rendering with high efficiency (Step 5). Finally,
the rendered image is transmitted to the VR display and shown to
the user (Step 6).

The computational flow of the described process is presented
in Figure 11 (b). Given the small size of the gaze direction values,
we ignore the DRAM access time, CPU processing time, and NoC
transmission time for simplicity. Let 𝑇𝑠 , 𝑇𝑐 , 𝑇𝑑 , and 𝑇𝑟 represent
the camera sensing time, MIPI communication time, gaze predic-
tion processing time, and foveated rendering latency, respectively.
According to the computational pattern shown in Figure 11 (b),
The maximum processing throughput in FPS that TFR can support
is given by 𝐹𝑃𝑆𝑚𝑎𝑥 = 1

𝑇𝑠+𝑇𝑐+𝑇𝑑+𝑇𝑟 . 𝑇𝑑 is the average processing
latency of gaze processing and can be expressed as follows:

𝑇𝑑 = 𝑃𝑠𝑎𝑐𝑇𝑠𝑎𝑐,𝑑 + 𝑃𝑟𝑒𝑢𝑠𝑒𝑇𝑟𝑒𝑢𝑠𝑒,𝑑 + 𝑃𝑝𝑟𝑒𝑑𝑇𝑝𝑟𝑒𝑑,𝑑 (6)

where 𝑃𝑠𝑎𝑐 , 𝑃𝑟𝑒𝑢𝑠𝑒 , and 𝑃𝑝𝑟𝑒𝑑 represent the probabilities of occur-
rence of saccade, gaze reuse, and gaze prediction, respectively, while
𝑇𝑠𝑎𝑐,𝑑 , 𝑇𝑟𝑒𝑢𝑠𝑒,𝑑 , and 𝑇𝑝𝑟𝑒𝑑,𝑑 denote the corresponding processing
latencies by the POLO accelerator.𝑇𝑟 , which represents the average
time for foveated rendering processing, can be expressed as:

𝑇𝑟 = 𝑃𝑠𝑎𝑐𝑇𝑠𝑎𝑐,𝑟 + (𝑃𝑟𝑒𝑢𝑠𝑒 + 𝑃𝑝𝑟𝑒𝑑 ) ×𝑇𝑓 𝑟,𝑟 (7)

where 𝑇𝑠𝑎𝑐,𝑟 represents the processing latency to render the image
at low resolution during a saccade. Previous studies [49, 55, 70]
have demonstrated that the image can be rendered with uniform
low resolution (e.g., 4 × 4) or directly reuse the last rendering view
before the saccade process happen. 𝑇𝑓 𝑟,𝑟 is the latency for foveated
rendering during the fixation stage, when gaze direction is available.

To further reduce overall latency and improve throughput, the
image rendering process can be performed in parallel with the
gaze tracking process, as shown in Figure 11 (c). This parallelism is
enabled by the hierarchical structure of foveated rendering, which
processes each pixel independently. As illustrated in Figure 11 (d),
the initial rendering R1 is done at a lower resolution tailored to the
peripheral region’s needs (Figure 3 (a)) and represented by the light
yellow pixels. This stage can proceed without the need for gaze
location data and can, therefore, run in parallel with the POLONet.
When gaze tracking information is produced by POLO accelerator,
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Table 1: Gaze tracking performance on OpenEDS 2020.

Method Mean Error(°) P90 Error(°) P95 Error(°)
NVGaze 6.81 13.07 18.62
EDGaze 3.25 18.29 22.80
DeepVoG 3.47 17.76 23.77
ResNet-34 1.52 5.96 13.15
IncResNet 1.72 6.23 12.4

INT8-POLOViT(0.4) 2.26 4.93 5.91
INT8-POLOViT(0.2) 1.29 2.31 2.92
INT8-POLOViT(0.0) 0.98 1.48 2.3

the foveal region, indicated by the darker yellow pixels, is rendered
next by processing the remaining pixels in this region as R2. The
total TFR time 𝑇𝑡𝑜𝑡 and throughput can be expressed as:

𝑇𝑡𝑜𝑡 = 𝑇𝑟1 +𝑇𝑟2, 𝐹𝑃𝑆𝑚𝑎𝑥 =
1

𝑇𝑟1 +𝑇𝑟2
(8)

where𝑇𝑟1 and𝑇𝑟2 are the processing latencies for R1 and R2. We as-
sume𝑇𝑑 is shorter than𝑇𝑟1 at a standard image resolution like 720P
or higher, based on the results in Section 7.4. With a fixed computa-
tional flow between hardware components during the TFR process,
it is possible to preconfigure these flows, optimizing operation and
communication patterns to enhance system performance.

6 POLONet Evaluation
We evaluate the POLONet using the OpenEDS2020 [81] dataset,
which includes 128,000 images from 32 participants in the training
set and 70,400 images from 8 participants in the validation set. It
also includes annotations specifying the type of eye movement
for each frame (fixation, saccade). We start by assessing the gaze
tracking performance in Section 6.1, followed by an evaluation of
saccade detection in Section 6.2, and ablation studies in Section 6.3.

6.1 Gaze Tracking Evaluation
In this section, we evaluate the gaze tracking error of the gaze
tracking ViT (POLOViT), a core component of POLONet shown in
Figure 7 and trained using the performance-aware training strategy
described in Section 4.3. We compare POLOViT with five base-
line methods, including NVGaze [56], EdGaze [36], DeepVoG [115],
ResNet [44], and Inc-ResNet [9]. Each baseline algorithm is trained
using its respective loss function from the original work to mini-
mize the average gaze tracking error, with all DNNs trained under
the same conditions. For EdGaze, we employ its default configura-
tion, denoted as “eye_net_m” in [39], for evaluation. For training
POLOViT, the scaling factor 𝑁 in Equation 4 is set to 100, and
binarization detection threshold 𝛾1 is set to 40. POLOViT is evalu-
ated across three token pruning ratios by adjusting the threshold 𝜂,
ranging from 0.0 (no pruning) to 0.4. Both weights and activations
quantized to 8 bits. The evaluation metrics include the average gaze
tracking error, as well as gaze tracking errors at 90th percentile
(P90) and 95th percentile (P95).

Table 1 shows that POLOViT without pruning under 8-bit INT
quantization, referred to as INT8-POLOViT (0.0), achieves the
optimal P95 error of 2.3°when trained using the performance-aware
training strategy. This result is significantly better than those of
all baseline algorithms. Furthermore, despite using a loss function

Table 2: Saccade detection performance of POLONet.

Dimension of ℎ𝑡 16 32 (POLO) 64 128
Accuracy↑ 99.0 99.4 99.4 99.6

Macro F1-score↑ 0.92 0.95 0.95 0.97

designed to emphasize minimizing the maximum gaze error, INT8-
POLOViT (0.0) also achieves the lowest average tracking error.
Even with pruning ratios of 0.2 and 0.4, POLOViT continues to
outperform the baseline methods in both average and max gaze
tracking error. For implementation, we utilize INT8-POLOViT (0.2)
to achieve an optimal balance between system performance and
tracking accuracy.

6.2 Saccade Detection Evaluation
In this section, we evaluate the saccade detection performance of
POLONet, as described in Section 4.1, which is formulated as a
binary classification task2. As shown in Table 2, POLONet achieves
a saccade detection accuracy of 99.5% and a Macro F1 score3 of 0.95
when configured with an RNN hidden dimension of 32, as speci-
fied in Equation 2. Table 2 compares saccade detection accuracy
across different RNN hidden dimensions for ℎ𝑡 . Although a hidden
dimension of 128 enhances performance, it comes at the expense
of increased computational costs. Moreover, the high Macro F1
score demonstrates that our method effectively identifies saccadic
occurrences while minimizing the misclassification of non-saccadic
events as saccades. This behavior is preferable, as it has a negligible
impact on the user’s visual experience.

6.3 Ablation Study on Hyperparameter
In this section, we analyze the impact of the hyperparameters𝛾1 and
𝛾2 on gaze tracking error used in Algorithm 1. Specifically, 𝛾1 plays
a critical role in guiding the binarization process and influencing
saccade detection performance. As shown in Table 3, POLONet
achieves the optimal Macro F1-score on the OpenEDS 2020 dataset
with 𝛾1 = 40, which is adopted by POLONet.

Next, we investigate the impact of 𝛾2, which is the frame differ-
ence threshold for gaze reuse on the binarized image. We analyze
the gaze tracking error of POLONet while accounting for gaze reuse
on the OpenEDS 2020 dataset across different 𝛾2 thresholds. Table 4
specifically presents both the P95 error and the mean gaze tracking
error, averaged over eye frames that reuse the results from the
previous frame for gaze tracking prediction.

As𝛾2 increases, the tracking error also rises. Specifically, when𝛾2
is set to 10, the 95th-percentile error and average error are 3.35° and
1.39°, respectively, making this the setting adopted in POLONet. In
contrast, setting𝛾2 to 15 or 20 results in either higher computational
costs or reduced gaze tracking accuracy.

7 POLO System Evaluation
In this section, we evaluate the performance of the POLO system
described in Section 5. The proposed POLO accelerator was imple-
mented in Verilog, with RTL synthesized using Synopsys Design
Compiler [11] to estimate chip area, timing, and power, based on
2The criterion used to evaluate classification performance is the F1 score, which is the
harmonic mean of precision and recall.
3The Macro F1 score is the average F1 score across all classes.
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Table 3: Impact of 𝛾1

𝛾1 Macro F1-score↑
35 0.93

40 (POLO) 0.95
45 0.94
50 0.94

Table 4: Impact of 𝛾2

𝛾2 P95 Error(°) Mean
≤ 5 3.08 1.32

≤ 10 (POLO) 3.35 1.39
≤ 15 3.8 1.47
≤ 20 4.34 1.68
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Figure 12: The end-to-end latency in three resolutions, across
eight scenes, four scenes are shown due to space limit. Pie
charts indicate the end-to-end latency breakdown for se-
lected settings. For POLO_R, its tracking error is adopted
using the results shown in Table 4 with 𝛾2 = 10.

45nm CMOS technology [51]. The design operates at 1 GHz, with
on-chip buffers modeled using CACTI [10]. Synthesis results were
scaled to 22nm using DeepScaleTool [94] to better alignwith current
VR SoC technology. The synthesized POLO accelerator occupies
an area of 0.75𝑚𝑚2 and delivers an average power consumption
of 0.15𝑊 . Area breakdown reveals on-chip buffers dominate (72%),
followed by the computational engine (24%) and IPU (4%).

We employ Vulkan-Sim [91], a GPU simulator for graphics work-
loads, to execute ray tracing rendering tasks. Eight scenes from
LumiBench [68] were selected to represent various levels of render-
ing complexity. We configure Vulkan-Sim [91] to simulate Jetson
Orin NX 8GB version [3, 21], a widely used edge GPU for VR
applications [42, 45, 82, 117, 124]. To precisely match real-world
specifications, the simulated GPU is set up with 8 streaming mul-
tiprocessors running at a core clock frequency of 765 MHz [3].
Foveated rendering is simulated at input image resolutions of 720P
(1280×720), 1080P (1920×1080), and 1440P (2560×1440). The foveal
region’s eccentricity angle 𝜃𝑖 was set to 5◦, with the final angle
𝜃 𝑓 calculated using Equation 1, where Δ𝜃 represents the 95th per-
centile gaze tracking error from the OpenEDS 2020 validation set
[81] for each method. The eccentricity angle of inter-foveal regions
is set 20 degrees larger than that of foveal regions. The resolution
drop of the inter-foveal region and the peripheral regions are set
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Figure 13: (a) Gaze tracking energy breakdown of all algo-
rithms implemented on their corresponding accelerators. (b)
TFR latency with and without accelerator. (c) Impact of com-
putational patterns on TFR latency.

to 4× and 16×, respectively, in line with previous work [5, 22, 84].
We simulate an image sensor design based on the 2-layer stacked
CMOS architecture developed in [67] for use in Meta VR HMDs.
To align with current standards, the sensor’s top layer uses a stan-
dard CMOS 65 nm process node, while the bottom layer utilizes a
22 nm process node. For performance evaluation regarding cam-
era and SoC communication, we reference the latency and energy
performance over the MIPI CSI interface as reported in [2].

The POLO framework comprises both the POLONet and the
POLO accelerator, with the pruning ratio of gaze tracking ViT
within POLONet set to 0.2. All other settings for POLONet adhere
to those specified in Section 6. During saccade, the image is ren-
dered with a low resolution with a downsampling ratio of 4 × 4.
To evaluate the specific impact of the POLONet, we compare other
algorithm baselines including ResNet34, IncResNet, EdGaze, Deep-
VOG. Each baseline gaze tracking algorithm is implemented on a
dedicated accelerator featuring a systolic array, an accumulator,
and an SFU for nonlinear operations, mirroring the configuration
of the POLO accelerator. The accelerator layout is optimized to
enhance performance for each gaze-tracking DNN within the same
total chip area. The same synthesis settings as the POLO accelerator
are applied to obtain end-to-end performance metrics, ensuring a
fair comparison. The tracking error of each algorithm affects the
eccentricity angle 𝜃 𝑓 , leading to differences in foveated rendering
cost. The total end-to-end latency is determined by combining the
delays from each component, as illustrated in Figure 11 (b) and (c).

7.1 TFR System Evaluation
We begin by evaluating the TFR performance of POLO accelerator.
Specifically, we examine POLO’s performance in three scenarios:
(1) during a saccadic event (POLO_S), (2) when the gaze location of
the previous frame is reused (POLO_R), and (3) for standard gaze
tracking without saccade influence or reuse (POLO_N). Since other
gaze tracking algorithms do not support saccadic detection or gaze
reuse, they are evaluated under standard gaze tracking. We adopt
the computational pattern shown in Figure 11 (b).

Figure 12 shows the system performance regarding TFR latency
over eight scenes at three resolutions: 720P, 1080P and 1440P. No-
tably, POLO_S and POLO_R show lower processing latencies com-
pared to POLO_N and other baseline algorithms. This advantage
is primarily due to the omission of the gaze tracking ViT, which
reduces the execution latency of the POLO accelerator, as detailed
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Table 5: Average TFR latency of eight scenes at 1080P with
different pruning ratios and comparison with Vive Pro Eye.

Pruning
Ratio 0 10% 20%

(POLO) 30% 40% Vive
Pro Eye [47]

Latency (ms) 47.6 46.6 45.4 46.0 47.9 86.7

in the pie chart breakdowns of latency components. Furthermore,
by leveraging input binarization and cropping (see Section 4.1),
our lightweight DNN for saccade detection only requires less than
2% of the latency needed by the gaze tracking ViT on the POLO
accelerator. POLO_N achieves gaze tracking latency up to 7.4×
lower than the other algorithms for eye tracking, and its minimal
gaze error enables a smaller foveal region, which in turn reduces
rendering latency by approximately 1.5× compared to other algo-
rithms. Specifically, at 720P, 1080P and 1440P resolutions, POLO_N
achieves an average TFR latency reduction of 2.46×, 2.06× times
and 1.85× compared to other algorithms on average. By averag-
ing the latencies of POLO_S, POLO_R, and POLO_N based on the
proportional occurrence of gaze reuse, saccades, and normal gaze
tracking within consecutive frames of OpenEDS 2020, and applying
equations 6 and 7, POLO demonstrates performance improvements
of 3.42×, 2.50×, and 2.09× compared to other algorithms at 720P,
1080P, and 1440P resolutions, respectively.

Compared to full-resolution rendering, shown in green bars in
Figure 12, POLO achieves consistently lower end-to-end latency
across a range of scenes and resolutions. POLO_N reduces latency
by up to 4.0× in the most complex scene, with an average reduction
of 2.5× at 1080P. Specifically, at 720P, 1080P, and 1440P, the aver-
age latencies of POLO_N are 26ms, 44ms, and 69ms respectively
across weight scenes, all satisfying the 50ms-70ms requirement
for foveated rendering [5]. Moreover, DeepVOG, hindered by its
computationally heavy gaze tracking neural network, experiences
gaze tracking latencies exceeding 70 ms in many cases and results
in even higher latencies than full-resolution rendering at 720P.

In addition to setting Δ𝜃 to the 95th percentile of gaze tracking
error, we configure it to mean gaze tracking error over the OpenEDS
2020 dataset for each algorithm, resulting in varying computational
costs for foveated rendering. The latency results, shown by the
dotted line with a purple square marker in Figure 12, show that
POLO still consistently outperforms baseline solutions in latency.

To preserve the visual experience affected by gaze tracking errors,
the resulting foveal angle 𝜃 𝑓 is calculated by adding the eccentricity
angle 𝜃𝑖 of the foveal region to the P95 value of gaze tracking error
Δ𝜃 . In practice, users may have a degree of tolerance for gaze
tracking errors, allowing visual experience to remain comparable
to viewing a fully rendered image.

To account for this human effect, we follow prior work [12, 17,
26, 31, 48, 75], and utilize the FovVideoVDP metric [75] to evalu-
ate visual quality in terms of discriminability and just-noticeable
difference (JND) [23], as illustrated in Figure 11 (e). Specifically,
discriminability represents the probability that a user, viewing a
foveated rendering with a central foveal region of 𝜃 𝑓 degrees and
experiencing a P95 gaze tracking error of Δ𝜃 , can discern a dif-
ference compared to a reference image rendered at full resolution.
To ensure this probability of feeling the visual quality drop (i.e.,
discriminability) remains below a probability (e.g., 5%), 𝜃 𝑓 can be

Figure 14: Participants are
joining in the user study,
which consists of 32 trials.
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Figure 15: Selection results
from the participants.

determined by identifying the intersection of the dotted horizontal
line representing 5% with the corresponding curves, each depicting
a different gaze tracking error. For example, as shown in Figure 11
(e), under P95 gaze tracking error of Δ𝜃 = 10◦, 𝜃 𝑓 needs to be
around 15◦ to ensure the probability of feeling the visual quality
drop is less than 5%. Using the 𝜃 𝑓 obtained from Figure 11 (e), the
performance is shown as a dotted line with a green triangle marker
in Figure 12. We observe that a similar trend holds, where POLO
achieves an average of 1.4×-1.5× reduction in rendering latency
and up to 5.3× reduction in end-to-end TFR latency.

Figure 13 (a) shows the energy breakdown of the gaze-tracking
accelerator for each algorithm to process one eye image of OpenEDS
2020, averaged across eight different scenes. The energy consump-
tion of POLO_N is significantly lower than that of other algorithms,
achieving an average of 4.1× reduction in energy consumption.
Additionally, most of the energy is consumed by memory access,
followed by the systolic array operations and SFU execution.

The POLO accelerator extends beyond conventional systolic ar-
rays by integrating several innovative components that significantly
enhance both performance and efficiency. The Image-Preprocessing
Unit (Section 5.1) generates binarization maps, determines gaze
reuse, and detects the pupil center using optimized hardware that
maximizes resource reuse through bit-level operations, thereby
eliminating the overhead of byte-level processing. The Token Selec-
tor (Section 5.2) accelerates the summation of attention scores and
token pruning by filtering effective tokens using preset thresholds;
a dedicated 1-bit mask flags token validity, obviating the need for
computationally intensive sorting and reshaping, and substantially
reducing memory accesses and latency associated with element-
wise operations. Lastly, the SoC Integration (Section 5.3) employs
a parallel processing strategy with hierarchical rendering, reduc-
ing end-to-end latency to just 90% of that observed in a sequential
scheme (see Section 7.4), and ensuring seamless integration with
the overall SoC architecture.

7.2 Impact of Gaze Tracking Accelerator
In this section, we analyze the isolated impact of the gaze tracking
algorithms on overall TFR performance. Specifically, we remove
the gaze tracking accelerator, making the GPU to handle both gaze
tracking and foveated rendering for each baseline algorithm. As
shown in Figure 13 (b), we observe that, without using gaze track-
ing accelerator, TFR latency of POLO_N increases by an average of
1.9× across all 8 scences at 1080P, as the GPU must now process
both tasks. Despite this, POLO still achieves the lowest TFR latency
among the candidate solutions. Our POLO accelerator outperforms
GPU-only solution by efficiently handling nonlinear operations
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Video 1 Video 2 Video 3 Video 4

Figure 16: Four different video clips.

and token-wise pruning in ViT. Specifically, it employs approxi-
mate hardware for activation functions on integer data (see Sec-
tion 5), thereby accelerating computationally intensive tasks such
as layer normalization and softmax [111]. Moreover, a dedicated
token pruning unit further minimizes memory accesses and avoids
high-latency operations such as top-k and reshaping. Finally, in
real-time applications with small batch sizes and network archi-
tectures, the systolic array within POLO accelerator achieves a
near-peak utilization rate, outperforming the GPU.

7.3 Impact on Pruning Ratio
In this section, we evaluate the impact of the token pruning ratio in
the gaze-tracking ViT by adjusting the threshold 𝜎 to achieve over-
all pruning ratios of 0%, 10%, 20%, 30%, and 40%, where a higher 𝜎
results in a greater token filtering ratio and a smaller gaze-tracking
latency. However, this also raises gaze-tracking error, leading to
increased foveated rendering latency. As shown in Table 5, a prun-
ing ratio of 20% yields the lowest average TFR latency across four
scenes at 1080P, which is the setting adopted by POLO. We incorpo-
rate gaze tracking latency and error data from [46, 98] to simulate
the TFR latency of a VR HMD equipped with the commercial eye
tracker Vive Pro Eye [47]. At 1080P resolution, as shown in Table 5,
the commercial system’s average end-to-end latency was 1.91×
slower than POLO_N.

7.4 Impact on Computational Pattern
We evaluate the TFR latency at 1080P resolution both with and
without parallel processing, as shown in Figure 13 (c). For sequential
processing, commercial HMDs with integrated eye trackers (e.g.,
Vive Pro Eye [47]) have a gaze detection delay (𝑇𝑑 ) of up to 50
ms [98]. In contrast, under our POLO_N scenario, 𝑇𝑑 is only 9.8
ms. Additionally, the rendering time (𝑇𝑟 ) varies significantly with
the graphics workload; for instance, for ray tracing, 𝑇𝑟 may range
from tens to nearly a hundred milliseconds as shown in Figure 12.
For parallel processing, since R1 operates independently of gaze
tracking, it can run concurrently with the gaze tracking process.
Using the computational pattern depicted in Figure 11 (c) results
in an average 9.4% reduction in TFR latency across various gaze
tracking algorithms across eight scenes. Specifically, the latency of
R1 averages 22 ms across all scenes, surpassing the 10.7 ms gaze
tracking latency of POLO_N while remaining lower than that of
other algorithms. For POLO_N, R1 fully overlaps with gaze tracking
latency in most scenes, resulting in an average 10% reduction in
end-to-end latency, with individual scene reductions ranging from
3 ms to 7 ms.

7.5 User Study
To assess the practical effectiveness of our eye-tracking method, we
evaluate the visibility of artifacts in gaze-tracked foveated rendering.

Specifically, we focus on measuring the gaze tracking accuracy of
the POLOViT architecture, depicted in Figure 7. Seven participants
were recruited for the study. As shown in Figure 14, during the
experiment, participants remained seated and observed the stimuli
via a HMD, the Meta Quest Pro [86]. Users interact with the study
using a standard keyboard interface.

The stimuli include monoscopic 360◦ videos (20 seconds each)
with gaze-tracked foveated rendering applied. The participants are
instructed to perform a two-interval-forced-choice (2IFC) task [114].
In each trial, users are shown three conditions applied to the same
video; the reference (unmodified) video, and two test videos, t1
and t2, with foveated rendering applied. The foveated rendering is
applied with traces of gaze tracking errors at varying levels, referred
to as e1 and e2, to assess their visual impact. One of the test videos
uses gaze data with tracking errors from POLOViT (0.2), while the
other uses error traces from ResNet-34, the best performing gaze
tracking solution among the baseline algorithms in Table 1. These
gaze tracking errors are artificially introduced on top of the eye
tracker in the Quest device. During the user study, t1 and t2, which
display the same visual content, are randomly paired with e1 and
e2. Participants can switch between t1 and t2 using the keyboard to
compare their relative visual quality. After observing both videos
at least once, the participants were instructed to select the test
video with higher visual quality. Four different video clips (sample
frames shown in Figure 16) were presented to users. We down-
selected these four videos from [32], which were chosen to cover a
diverse range of scenes—including static/dynamic, rendered/real-
world captured, bright/dark, and indoor/outdoor scenarios. Two
videos include significant motion, and the other two are largely
static. This results in 4 (videos) × 2 (tracking errors) × 4 (repeats)
= 32 trials. For each participant, the 32 trials were presented in a
random order to mitigate potential order effects.

Figure 15 depicts the results. Across participants, POLOViT was
selected 90%±7% of the time over the baseline algorithm. The trend
is consistent across individual videos 93%±9% for video 1, 73%±13%
for video 2, 91%±12% for video 3, 100%±0% for video 4. These results
evidence that the superior tracking accuracy of our gaze tracking
solution can improve the quality of gaze-contingent applications
such as foveated rendering.

8 Conclusion and Future Work
The cost of image rendering in VR environments is substantial,
driven by the high-quality visual expectations of users. POLO ad-
dresses these challenges by leveraging the natural dynamics of
human eye behavior to reduce the computational demands of the
rendering process. By co-optimizing the AI-based gaze tracking
solution with the underlying hardware system, POLO achieves a
significant reduction in TFR latency and energy consumption.

Although POLO has been thoroughly evaluated through the
methods outlined in Section 6 and Section 7, the impact of TFR
latency on user visual experience remains an area for further ex-
ploration, even though previous studies suggest that a TFR latency
of 50-70 ms is generally acceptable [5]. Additionally, the effect of
saccade detection inaccuracies on user experience requires further
investigation, and more comprehensive user studies on real HMDs
will be necessary in the future.
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