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Abstract

Balancing accuracy and hardware efficiency remains a challenge
with traditional pruning methods. N:M sparsity is a recent approach
offering a compromise, allowing up to N non-zero weights in a
group of M consecutive weights. However, N:M pruning enforces a
uniform sparsity level of 𝑁

𝑀
across all layers, which does not align

well sparse nature of deep neural networks (DNNs). To achieve a
more flexible sparsity pattern and a higher overall sparsity level, we
present JointNF, a novel joint N:M and structured pruning algorithm
to enable fine-grained structured pruning with adaptive sparsity
levels across the DNN layers. Moreover, we show for the first time
that N:M pruning can also be applied over the input activation for
further performance enhancement.
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1 Introduction

DNN pruning has been studied extensively in the previous litera-
ture [3, 4, 7, 10–12, 17], which can be broadly divided into two cat-
egories: unstructured pruning and structured pruning. Unstructured
pruning allows for a high degree of model sparsity without com-
promising accuracy, but the nonuniform placement of the nonzero
weights makes hardware implementation challenging [17]. On the
other hand, structured pruning removes entire blocks of model pa-
rameters (e.g., filters), making it more suitable for efficient hardware
implementation. However, this approach sacrifices some flexibility
in the sparsity patterns and may lead to suboptimal model accuracy.
Recently, a new class of fine-grained structured sparsity called N:M

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0688-2/24/08. . . $15.00
https://doi.org/10.1145/3665314.3670813

sparsity has received a growing amount of attention [11, 15, 18].
This approach, illustrated in Figure 1(a), restricts the number of
nonzero weights to at most N within a group of consecutive M
(where 𝑁 ≤ 𝑀). N:M sparsity has been found to result in signifi-
cant speedup on commodity hardware platforms (e.g., Nvidia V100
GPU [1]) compared to the original dense DNN.

Although N:M sparsity has shown promise in terms of perfor-
mance, it imposes a strict sparsity ratio that is not greater than
or equal to 𝑁

𝑀
(e.g., 20%) across all DNN layers. This constraint

on sparsity ratio may result in suboptimal accuracy performance
because the sparsity ratios of various DNN layers tend to differ.
Previous studies have demonstrated that under a fixed total amount
of pruned weights, nonuniform sparsity among layers is crucial
for achieving high test accuracy [3]. To better understand this, we
conduct a simple experiment to evaluate the sparsity distribution
across layers within ResNet-18 on the ImageNet dataset. We apply
global magnitude pruning, which involves initially sorting all the
weights in a DNN according to their magnitudes, followed by re-
moval of the smallest 80%weights. Figure 1(c) illustrates the uneven
sparsity ratio distribution of each ResNet-18 layer, with the later
layers tending to have much greater sparsity ratios than the earlier
layers. This result confirms layer-wise adaptive sparsity plays an
important role on the test accuracy for a sparse DNN.

In this work, we propose a novel joint N:M and structured prun-
ing solution termed JointNF to achieve more flexible fine-grained
structured sparsity while maintaining high hardware efficiency.
JointNF utilizes both N:M and structured pruning in a complemen-
tary fashion: N:M pruning is used to achieve fine-grained sparsity
with a consistent sparsity ratio across all layers. On the other hand,
structured pruning is applied together to facilitate adaptable spar-
sity across the layers. JointNF takes advantage of the structured
characteristics of both N:M pruning and structured pruning, re-
sulting in superior hardware efficiency while attaining optimal
test accuracy. This performance exceeds that of N:M pruning or
structured pruning applied alone. Moreover, we demonstrate that
N:M pruning can also be applied to input activation to produce
fine-grained structured transient sparsity. To accomplish this, we in-
troduce a novel activation function called NMReLU, which imposes
N:M sparsity on input activation and can be used in conjunction
with N:M weight pruning to further speed up DNN inference. Over-
all, our contributions are summarized as follows:

• We introduce JointNF, an innovative pruning approach that
combines N:M and structured pruning on DNN weights for
superior accuracy and hardware efficiency. It employs an
iterative magnitude-based method that minimizes changes
to the L1 norms with a theoretical guarantee.

• We propose NMReLU, a novel activation function that allows
for N:M sparsity on the DNN intermediate data.
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Figure 1: (a) 2:4 pruning on DNN weights. A 4 × 4 weight matrix is column-wise compressed into a 4 × 2 matrix. (b) 2:4 pruning

on DNN inputs. A 4 × 4 data matrix is column-wise compressed into a 2 × 4 matrix. (c) Sparsity ratios on ImageNet, with

lighter/darker bars denoting weights before/after magnitude pruning, and nonzero weights percentages indicated atop each bar.

• We design a JointNF compute engine that enables efficient
matrix multiplication between N:M sparse weight and data.

• The evaluation results indicate the proposed JointNF solu-
tion can obtain a 2%-7% higher accuracy than other baseline
pruning algorithms while reducing energy consumption by
more than 5×.

2 Backgrounds and Related Work

DNN pruning can be categorized into two types: unstructured and
structured pruning. Unstructured pruning [3, 4] involves removing
each parameter individually, resulting in an uneven distribution of
nonzero weights. While this method yields a highly sparse model,
the irregularity of the sparsity pattern makes computing the sparse
DNN challenging. To mitigate this, structured pruning was pro-
posed, which removes DNN weights at a higher granularity level,
such as filter-wise pruning [6, 12] within Convolutional Neural
Networks (CNNs) and block-wise pruning for Transformer [14].
Although structured pruning generally leads to higher hardware
utilization, it may come at the cost of suboptimal accuracy.

A middle ground between unstructured and structured pruning
schemes is the N:M fine-grained structured sparsity, which has
been recently proposed in literature such as [8, 15, 18]. In [18],
the authors introduce an effective method called sparse-refined
straight through estimator (SR-STE) to train the N:M sparse network
by addressing gradient mismatch issues during backpropagation.
However, this method enforces uniform sparsity across all layers
of DNN, which can result in reduced accuracy when the sparsity
level is high. In [8], the authors demonstrate that N:M sparsity can
also accelerate the DNN training process. In comparison, our work
proposes JointNF that allows for an adaptive sparsity pattern for the
entire DNN, resulting in a sparse DNN that is amenable to efficient
hardware implementation.

3 Joint Pruning Algorithms

The large solution space for pruning pattern selection makes joint
N:M and structured pruning a challenging problem. To solve it,
we first solve a simpler version of this problem: given the target
number of filters to prune in a single layer, how does one perform
joint N:M and structured pruning while minimally impacting the
L1 norm? We propose an algorithm to solve this problem, and then
describe our iterative JointNF algorithm in Section 3.1. Finally, we
describe the NMReLU activation function in Section 3.2.

3.1 Joint N:M and Filterwise Pruning for CNN

Algorithm 1: NFFS Algorithm
Input: W is the weight matrix. 𝑁 weights are kept for every𝑀

weights.𝑈 filters are removed from W.
1 for every group of M weights in W do

2 Find the top N weights with largest magnitude, remove the
other smaller weights. // Perform N:M pruning.

3 Sort the rows of the N:M sparse matrix based on L1 norm.
4 Remove U filters with the smallest L1 norm.

We first consider the pruning strategy for CNN. Consider a four-
dimensional weight tensor with 𝐶𝑜𝑢𝑡 output channels, 𝐶𝑖𝑛 input
channels, and a kernel size of 𝑘𝑤 × 𝑘𝑤 . We employ the im2col
operation to transform the weight tensor into matrix format. This
will convert a 𝐶𝑜𝑢𝑡 × 𝐶𝑖𝑛 × 𝑘𝑤 × 𝑘𝑤 weight tensor into a two-
dimensional 𝐶𝑜𝑢𝑡 × 𝐷 weight matrix W, where 𝐷 = 𝐶𝑖𝑛𝑘

2
𝑤 . Under

this notation, pruning a filter is equivalent to eliminating a whole
row from W. Assume𝑈 filters are targeted for removal in W, and
N:M pruning is applied to the remaining weights. We define a
binary mask S ∈ {0, 1}𝐶𝑜𝑢𝑡×𝐷 , where S𝑖 𝑗 = 0 indicates that W𝑖 𝑗 is
removed and vice versa. To limit the impact of magnitude pruning,
we aim to minimize the total change in L1 norm. Therefore, we
need to find the mask S such that the removed weights have the
smallest L1 norm. The detailed algorithm for solving this problem
is described in Algorithm 1. We name this algorithm N:M pruning
First, Filterwise pruning Second (NFFS).

The NFFS algorithm generates the optimal pruning selection
with the minimum changes on L1 norm. To show this, let 𝑃 denote
the set that contains all of the smallest𝑀 − 𝑁 weights across the
entire weight groups. The set 𝑄 is all the weights in the pruned
filters. Our goal is then minimizing the L1 norm of all the weights
contained in 𝑃 ∪𝑄 . 𝑃 ∪𝑄 is equal to 𝑃 ∪ ((𝑄 ∩ 𝑃) ∪ (𝑄 ∩ 𝑃𝑐 )) =
𝑃 ∪ (𝑄 ∩ 𝑃𝑐 ). This indicates that the set of eliminated weights
includes all the weights in 𝑃 (i.e., weights removed by N:M pruning)
and (𝑄 ∩ 𝑃𝑐 ). Since 𝑁 and𝑀 are predefined, the total L1 norm of
the weights in 𝑃 is fixed. To minimize the L1 norm of the weights
in (𝑄 ∩ 𝑃𝑐 ), we can search for the weight filters with the smallest
L1 norm on the resulting N:M sparse weight matrix.

As suggested by the NFFS algorithm, we have designed an itera-
tive pruning approach, called JointNF, to progressively eliminate
the smallest magnitude weights. An example of JointNF is given
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JointNF with 1:2 weights and 2:4 data.

in Figure 2. For illustration purposes, we assume JointNF operates
on a DNN with two layers and all the two weight matrices have
the same shape of 2 × 4. The 2:4 pruning (N=2, M=4) is applied
across the two layers and𝑈 = 1 filter will be removed at the current
pruning round. At the beginning of a pruning round, the weights
in two layers are first trained until convergence (step 1 in Figure 2).
Within each row, the top N=2 weights with the largest magnitude
(highlighted by ✓ in Figure 2), are separated from the other weights,
called local weight candidates (X in Figure 2). The local weight can-
didates are then aggregated in a weight candidate pool (Step 2).
After that, 𝑝 = 50% of the smallest weights are pruned from the
weight candidate pool (Step 3), where 𝑝 is a hyperparameter that
specifies the percentage of removed weights for N:M pruning at
each pruning round. Then, each row of the intermediate weight
matrix is sorted by their average L1 norm and the smallest filter,
which corresponds to the second row of the weight matrix in Layer
1, will be eliminated (Steps 4, 5). This iterative process will repeat
for multiple rounds until the weight candidate pool is exhausted
and the target number of filters are removed. Between each round,
the weights selected as local weight candidates may be different, but
there are always at least N weights reserved for every consecutive
group of𝑀 weights.

To identify and eliminate insignificant weight filters, we lever-
age the network slimming approach introduced in [12]. In network
slimming, L1 regularization is applied to the scaling factors and
bias factors in the Batch Normalization (BN) layers, pushing the
unimportant scaling factors to a small value, which further allows
us to identify the unimportant filters associated with the scaling
factors. However, the original network slimming method does not
consider N:M pruning and filterwise pruning in conjunction. In or-
der to involve the impact of the scaling factors on the filter weights
for performing JointNF pruning, we integrate the scaling factors to
the filter weights by multiplying each scaling factor with its associ-
ated filter. The resulting weight filters will be pruned iteratively as
shown in Figure 2.

3.2 N:M Pruning on the Data Activations

The extensive use of ReLU and ReLU6 in Deep Neural Networks
(DNN), particularly in Convolutional Neural Networks (CNN), in-
volves setting all negative outputs to zero. This process leads to
a sparse input for subsequent layers. However, due to the irreg-
ular distribution of zeros, harnessing this sparsity for hardware
efficiency becomes challenging. To address this issue, we introduce
a new activation function called NMReLU. NMReLU ensures that
within every consecutive group of M activation values, there are at
most N nonzero values.

An example of NMReLU is shown in Figure 1(b). A 2:4 ReLU
is applied to a 4 × 4 data matrix A. All negative data values are
first converted to zeros by ReLU. In addition, the last two positive
values on the forth column are also removed by the N:M sparsity
constraint on this column. During the DNN training stage, only the
gradients of the nonzero values are propagated to the earlier layers
for weight updates. For iterative pruning, we progressively apply
NMReLU to all the layers during the DNN training process.

3.3 Joint Pruning for Transformer

A similar strategy as described in Section 3.1 can be applied to
the Transformer architecture. Specifically, we employ the JointNF
technique across all the linear layers within both the self-attention
and feedforward layers. In addition to achieving N:M sparsity in the
linear layer weights, we also introduce structured pruning by elim-
inating entire rows from the weight matrices. This effectively re-
duces the embedding dimension for subsequent transformer blocks,
resulting in a reduction in computation costs. However, it’s impor-
tant to note that since ReLU activation functions are not typically
used within transformers, the input activations are generally not
sparse. As a result, we do not apply NMReLU to transformers.

3.4 Computational and Storage Analysis

In this section, we provide a numerical analysis of the savings on
computational cost and storage cost generated by JointNF over CNN.
Let A𝑙 ∈ {R𝐵×𝐶𝑖𝑛,𝑙×𝑘𝑎,𝑙×𝑘𝑎,𝑙 } andW𝑙 ∈ {R𝐶𝑜𝑢𝑡,𝑙×𝐷𝑙 } denote the 2D
data matrix and weight matrix of layer 𝑙 , where 𝐵 and 𝑘𝑎,𝑙 represent
the batch size and kernel size of A𝑙 , respectively. Define𝐷𝑙 = 𝐶𝑖𝑛,𝑙 ×
𝑘𝑤×𝑘𝑤 .𝐶𝑖𝑛,𝑙 ,𝐶𝑜𝑢𝑡,𝑙 and𝑘𝑤 represent the number of channels, num-
ber of filters and kernel size ofW𝑙 , respectively. Further assume that
an 𝑁𝑤 :𝑀𝑤 and 𝑁𝑎 :𝑀𝑎 sparsities are applied on the weight matrices
and data matrices, respectively, and 𝑈𝑙 filters are removed from
W𝑙 . Then the number of operations in 𝑙-th convolutional layer is
𝑁𝑤𝑁𝑎

𝑀𝑤𝑀𝑎
𝐵𝑘2

𝑎,𝑙
𝐶𝑖𝑛,𝑙 (𝐶𝑜𝑢𝑡,𝑙 −𝑈𝑙 )𝑘2𝑤 , and the associated storage cost of
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the weight and data will be 𝑁𝑤
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2
𝑎,𝑙

( 𝑁𝑎 ⌈𝑙𝑜𝑔2𝑀𝑎 ⌉
𝑀𝑎

+ 𝑏𝑎), where 𝑏𝑤 and 𝑏𝑎 are the
storage cost (in bits) for a single weight and data value, respectively.
𝑁𝑤 ⌈𝑙𝑜𝑔2𝑀𝑤 ⌉

𝑀𝑤
and 𝑁𝑎 ⌈𝑙𝑜𝑔2𝑀𝑎 ⌉

𝑀𝑎
are average number of bits per value

to record the index information of N:M sparsity (See Figure 3 (a)).
Additionally, the elimination of the 𝑖-th filter in Layer 𝑙 will lead
to the removal of the 𝑖-th feature map in the convolutional output.
Since the scaling factors and biases associated with the pruned
filters in the BN layer will also be tiny due to the L1 regularization,
and the activation layer involves only elementwise operations, the
input to the (𝑙+1)-th convolutional layer will also has its 𝑖-th feature
map eliminated. This will further induce the removal of the weight
kernels that apply on the removed input feature maps. In JointNF,
we make the group size M equal to the weight kernel size (M=𝑘2𝑤 )
so that the removal of the weight kernels will cause the whole
weight groups to be pruned, generating a further reduction on com-
putational and storage cost at layer 𝑙 + 1. The amount of operations
in (𝑙 + 1)-th convolutional layer will be 𝑁𝑤𝑁𝑎

𝑀𝑤𝑀𝑎
𝐵𝑘2

𝑎,𝑙+1 (𝐶𝑖𝑛,𝑙+1 −
𝑈𝑙 ) (𝐶𝑜𝑢𝑡,𝑙+1 −𝑈𝑙+1)𝑘2𝑤 , and corresponding weight storage cost will
be 𝑁𝑤

𝑀𝑤
(𝐶𝑖𝑛,𝑙+1 −𝑈𝑙 ) (𝐶𝑜𝑢𝑡,𝑙+1 −𝑈𝑙+1)𝑘2𝑤 ( 𝑁𝑤 ⌈𝑙𝑜𝑔2𝑀𝑤 ⌉

𝑀𝑤
+𝑏𝑤). A sim-

ilar results can be derived for transformer, and we eliminate this
due to space limit.

4 JointNF Hardware System Design

We now describe the design of the processor array that performs
efficient inference by leveraging the N:M sparsity presented in both
DNN weight and data values (if any). To enable a simple system
design, we use a 2D systolic array to implement the computation
engine. However, we note that our JointNF pruning paradigm can
also support other computational engine designs.

The systolic array consists of multiple nm-MACs, where each
nm-MAC performs the dot products between𝑀𝑎 ×𝑀𝑤 data matrix
and𝑀𝑤 ×1weight vector, where the data matrix and weight matrix
are applied with 𝑁𝑎 : 𝑀𝑎 and 𝑁𝑤 : 𝑀𝑤 sparsities, respectively.
A hardware design of a nm-MAC for 2:4 weight and 2:4 data is
shown in Figure 5 (a), which mainly consists of two multipliers,
four adders, and a register file. Figure 4 (a) shows an example of nm-
MAC operation between a 4× 4 data matrix and 4× 1 weight vector,
where 2:4 pruning is applied to both of them (i.e., 𝑁𝑤 = 𝑁𝑎 = 2 and
𝑀𝑤 = 𝑀𝑎 = 4). The compressed data and weight matrices will have
a dimension of 2 × 4 and 2 × 1, respectively. Before the operation,
𝑁𝑤 nonzero weight values and their associated indices are first
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buffered inside the register file (Figure 4 (b)). During operation, the
nonzero data values together with their indices will be sent to the
nm-MAC (Figure 4 (c)) for multiply-accumulate computation. The
computation is performed within 𝑁𝑎 = 2 rounds. During the first
round of operation (Figure 5 (b)), the first row of the compressed
data matrix, together with their indices, is sent to the nm-MAC, and
𝑁𝑤 = 2 data values are selected according to the weight indices.
The selected data will multiply with the pre-stored weight values,
and the intermediate results will be directed and buffered at the
corresponding output location according to the data indices. In
the second round of operation (Figure 5 (c)), the second row of
the data matrix will enter the MAC and similar operations will be
executed, and the final output will be accumulated and forwarded
to the nm-MAC on the right side.

The proposed nm-MAC design, coupled with N:M sparse weight
and data matrices, can achieve significant hardware savings. Specifi-
cally, the nm-MAC design can performmatrix-vector multiplication
between 4 × 4 data matrix and 4 × 1 weight vector only using two
multipliers within two rounds. In comparison, matrix-vector com-
putation between the dense 4 × 4 data matrix and 4 × 1 weight
vector using a standard MAC would require eight multipliers in
order to finish the computation in two rounds. In general, nm-MAC
requires 𝑁𝑤 multipliers to perform matrix multiplications between
a𝑀𝑎 ×𝑀𝑤 data matrix and𝑀𝑤 × 1 weight vector with 𝑁𝑎 rounds,
while the standard MAC requires𝑀𝑎 ×𝑀𝑤 multipliers to perform
the multiplication. This results in large hardware savings given
𝑁𝑎 and 𝑁𝑤 are much smaller than𝑀𝑎 and𝑀𝑤 , respectively. More
evaluation results can be found in Section 5.2.

The Special Function Unit (SFU) takes systolic array output and
performs NMReLU. Each SFU has multiple PEs, each processing the
outputs from a single row of the systolic array. A PE’s architecture
is shown in Figure 5 (d). A digital comparator compares input to
zero, truncating negatives. Nonzero results feed a counter tracking
positive values. Output is set to zero if the number of positive
values exceed 𝑁𝑎 out of every𝑀𝑎 data values. We also developed
an efficient storage format for the N:M sparse input and weights,
where the values and their indices are stored separately. Figure 5
(e) provides an example of storing a 2:4 sparse input matrix shown
in Figure 4 (a). The weights are stored in a similar fashion, where
non-zero values and corresponding indices are stored separately.

5 Performance Evaluation

We evaluate the performance of JointNF on multiple DNNs for
different applications. For image classification task, we evaluate
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Table 1: Test accuracies evaluation on different CNN-based Models.

Methods ResNet-18 ResNet-50 MobiletNet-v2 VGG-16 Masked-RCNN

Accuracy GFLOPs Accuracy GFLOPs Accuracy GFLOPs Accuracy GFLOPs AP GFLOPs
Dense 69.15 (0.00) 1.80 75.78 (0.00) 4.076 71.90 (0.00) 0.580 71.62 (0.00) 15.506 37.11 (0.00) 275.6
SR-STE 67.43 (-2.02) 0.618 74.93 (-0.85) 0.926 69.35 (-2.55) 0.227 70.87 (-0.75) 3.831 34.54 (-2.57) 97.7
ASP 66.79 (-2.36) 0.618 74.66 (-1.14) 0.926 68.93 (-2.97) 0.227 70.11 (-1.51) 3.831 33.07 (-4.04) 97.7
NS 62.58 (-6.57) 0.632 71.40 (-4.38) 0.920 65.12 (-6.78) 0.238 68.86 (-2.76) 3.187 29.15 (-2.05) 88.84

ThiNet 62.28 (-6.87) 0.590 71.33 (-4.45) 0.914 67.08 (-4.82) 0.244 68.62 (-3.00) 3.176 30.51 (-6.6) 90.48
GReg-2 62.71 (-6.44) 0.616 71.67 (-4.11) 0.931 67.35 (-4.55) 0.260 68.96 (-2.66) 3.202 29.45 (-7.66) 91.18

JointNF-4-4-0.2 68.45 (-0.70) 0.302 75.58 (-0.20) 0.653 71.22 (-0.68) 0.102 71.33 (-0.29) 2.787 35.89 (-1.22) 48.50
JointNF-6-4-0.1 69.03 (-0.12) 0.491 75.71 (-0.07) 0.919 71.72 (-0.18) 0.164 71.50 (-0.12) 3.660 36.43 (-0.68) 72.59

Table 2: Accuracies of ViT on ImageNet.

Methods Dense JointNF-4-0.3 SR-STE ASP

Acc.% GFLOPs Acc.% GFLOPs Acc.% GFLOPs Acc.% GFLOPs
ViT-base 75.88 4.56 75.57 1.092 74.13 1.16 74.23 1.16
ViT-large 76.95 15.48 76.43 4.80 75.25 4.92 75.02 4.92

ResNet-18, ResNet-50, MobileNet-V2, VGG-16 and vision trans-
former (ViT) [2] on the ImageNet (ILSVRC 2012) dataset (Sec-
tion 5.1). We also evaluate JointNF on Mask R-CNN [5] with the
COCO dataset for the objection detection task. Specifically, we com-
pare JointNF with two categories of pruning algorithms: 1) Standard
N:M pruning algorithms on DNN weights only (Nvidia ASP [1])
and their advanced variants (SR-STE [18]); 2) Filterwise pruning
algorithms (Network Slimming (NS) [12], ThiNet [13], and GReg-
2 [16]). For fair comparisons, we strictly apply the same pruning
pipeline for all methods. All DNNs are trained for 60 epochs using a
batch size of 128 with three pruning rounds. A uniform amount of
weights are removed for either N:M pruning or filterwise pruning
(or both) across the pruning rounds. For MobileNet-V2, we only
prune the weights in the pointwise layer and keep the depthwise
layer intact. For Masked R-CNN, we exclusively prune the backbone
network. For ViT-base and ViT-large, we prune the linear layers
within the self-attention layers and feedforward layers.

5.1 Performance Evaluation on DNNs

In this section, we evaluate the accuracy performance of JointNF
together with NMReLU across different DNNs. Table 1 shows the
performance of each approach on ImageNet for ResNet-18, ResNet-
50, MobileNet-v2, VGG-16 and ViT. Since the kernel size of the
pointwise convolutional layer in MobileNet-v2 is 1 × 1, we group
the weights along the input channel dimension. For Masked R-
CNN, we use ResNet-50 as the backbone network, and use Average
Precision (AP) as the evaluation benchmark. For SR-STE and ASP,
we apply a 3:9, 2:9, 3:9, 2:9, 3:9 and 3:9 pruning on DNN weights for
ResNet-18, ResNet-50, MobileNet-v2, VGG-16, ViT and Masked R-
CNN, respectively. For Network Slimming (NS), GReg-2 and ThiNet,
we prune 60%, 70%, 60%, 80%, 70% and 70% of weight filters (or
hidden dimension) on ResNet-18, ResNet-50, MobileNet-v2, VGG-
16, ViT and Masked R-CNN, respectively. We evaluate two types of
JointNF algorithms by using different pruning ratios: for the first
type of JointNF (JointNF-4-4-0.2), we apply 4:9 pruning (NMReLU
activation function with 4:9 ratio) on activations, and 4:9 pruning
in conjunction with 20% filters pruned on DNN weights for all the
DNNs. We also evaluate the performance of JointNF-6-4-0.1, which

applies 6:9 pruning on activations and 4:9 pruning in conjunction
with 10% filters pruned for weights.

From Table 1 we notice that, compared with the dense DNN
implementation, JointNF-4-4-0.2 leads to an average of 3.60%, 2.41%,
3.38% and 1.638% improvements on test accuracy compared with
the other baseline approaches for ResNet-18, ResNet-50, MobileNet-
v2 and VGG-16 and ViT. JointNF-4-4-0.2 also outperforms all other
algorithms in terms of AP and FLOPs for Masked R-CNN. Table 1
also shows JointNF-6-4-0.1, with a less aggressive pruning ratio,
can achieve accuracy comparable to dense DNN, while incurring
an average of 4.1× savings in FLOPs on average compared with
the dense DNN. JointNF achieves the optimal performance because
it leverages the sparity presented in both DNN weight and data,
which is in contrast to the other approaches that only prune DNN
weights. In addition, JointNF also enables flexible pruning patterns
across different layers via filterwise pruning, thereby achieving
superior test accuracy compared to other structured methods that
exhibit the same level of sparsity.

Table 2 shows the accuracy evaluation over ViT-base and ViT-
large. For ViT, we evaluate 4:8 pruning with 30% row-wise pruning
(JointNF-4-0.3), and apply 3:8 pruning for the rest methods. NM-
ReLU is not applied to ViT. We also observe a similar trend as
CNN, where JointNF achieve the highest accuracies than other
N:M pruning approaches, while resulting in the highest saving on
computation cost.

5.2 Hardware Evaluation

In this section, we evaluate the performance of the nm-MAC de-
scribed in Section 4. We have implemented and synthesized the
nm-MAC using Catapult High-Level Synthesis (HLS) in a com-
mercial 16nm process technology. The register-transfer level (RTL)
design is synthesized from SystemC, and a C++ testbench was de-
veloped to validate functionality. We evaluate the efficiency of our
nm-MAC design by comparing it against two other MAC designs:
(1) bit-parallel implementations of a conventional MAC (pMAC)
and (2) a MAC design that supports N:M sparsity only on the DNN
weight (bMAC). We evaluate the two designs for the following
multiply-accumulate operation: 𝑌𝑜𝑢𝑡 = 𝐴𝑊 + 𝑌𝑖𝑛 , where 𝑌𝑖𝑛 , 𝑌𝑜𝑢𝑡 ,
and𝑊 all have a shape of 9×1, and𝐴 have a shape of 9×9. Figure 6
(a) shows the layout for a pMAC, which performs multiplication
between the weight and data and sums the result with the input
accumulation in one cycle. To compute the results, we adopt an
array of 9 pMACs, which can compute the dot product between
two 9 × 1 vectors in one cycle. Therefore it will take 9 cycles to
compute the results. The bMAC implementation which supports 3:9
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Figure 6: MAC designs.

MACs Area Energy
efficiency efficiency

nm-MAC-4-4 1× 1×
nm-MAC-6-4 0.62× 0.64×

bMAC 0.56× 0.60×
9 pMACs 0.23× 0.21×

Table 3: Evaluation on MAC

designs.

sparse weight multiplication is shown in Figure 6 (b), whose archi-
tecture is based on the design proposed by [9]. It consists of three
multipliers, three adders and additional routing hardware. With a
bMAC, it takes 9 cycles to complete the processing of the results.
Finally, we implements two different nm-MACs for JointNF-4-4-0.2
and JointNF-6-4-0.1, respectively. The nm-MACs-4-4 enables matrix
multiplication between a 4:9 input and a 4:9 weight, necessitating 4
cycles for computing the results. Similarly, the nm-MACs-6-4 sup-
ports matrix multiplication between a 6:9 input and a 4:9 weight,
requiring 6 cycles to complete the process.

Given the processing latencies described above, we further mea-
sure the area and power consumption of each MAC design and
compute the area efficiency and energy efficiency. As shown in
Table 3, compared with pMAC and bMAC, nm-MAC-4-4 achieves
the best performance in terms of both area efficiency and energy
efficiency. Compared with nm-MAC-4-4, nm-MAC-6-4 has lower
area efficiency and energy efficiency due to the higher processing
latency, but it can still achieve on average 1.2× and 2.86× higher
area and energy efficiency compared with bMAC and pMAC arrays.

We now evaluate the performance of our JointNF system de-
scribed in Section 4. Specifically, we evaluate the performance of
the JointNF system by comparing against the other DNN inference
systems implemented with bMAC and pMAC. Additionally, we
evaluate two different JointNF systems that are equipped with two
types of nm-MACs described in Table 3. We call these two systems
JointNF-4-4-0.2 and JointNF-6-4-0.1, respectively. We configure all
hardware systems to have the same total area. Specifically, we are
able to fit JointNF-4-4-0.2 and JointNF-6-4-0.1 systems with 16 × 16
and 15× 15 nm-MAC systolic arrays, respectively. In contrast, with
the same area, we can fit a 20× 20 bMAC systolic array and 32× 32
pMAC array. Each bMAC can multiply the dense input data with 3:9
weights. We quantize all the weight and data to 8 bits so that 8-bit
multipliers and adders can be used in each type of MAC design. For
the bMAC and pMAC system, the special function unit performs
ReLU operation instead of NMReLU on the DNN outputs, and the
dense outputs will be saved in the data SRAM with the original
format without encoding. We implement the resulting sparse DNNs
generated with JointNF-4-4-0.2 and JointNF-6-4-0.1 described in
Table 1. In comparison, we deploy original dense DNN on bMAC
and pMAC systems, respectively. The left side of Figures 7 show
the area breakdown of the proposed JointNF-4-4-0.2 system. Notice
that the majority of the area is consumed by the systolic array and
memory subsystem, which take 37.2% and 31.3%, followed by the
accumulator (18.5%) and special function unit (13.0%).

The right side of Figure 7 compares the energy consumption
of JointNF-4-4-0.2, JointNF-6-4-0.1, pMAC, and bMAC hardware
systems to process one ImageNet input sample. Specifically, the
JointNF-4-4-0.2 system consumes an average of 3.9×, 4.3×, 3.5×,
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Figure 7: Energy consumption and the breakdown of the

different hardware systems under different DNN workloads.

and 4.7× less energy for ResNet-18, ResNet-50, MobileNet-v2, and
ViT, respectively, than the other baseline systems. The JointNF
system achieves superior performance for two major reasons. Most
importantly, the JointNF pruning algorithm, in conjunction with
NMReLU, significantly reduces multiplication operations between
the DNN data and weight. Second, given the N:M sparsity pattern
presented in both DNN data and weight, nm-MAC designs can
achieve significant latency and power reduction.

6 Conclusion

In this paper, we propose JointNF for efficient learning of joint N:M
and filterwise sparsity. We also propose a JointNF hardware system
to process the N:M sparse DNNs with high efficiency. Evaluations
over multiple DNN models and datasets demonstrate that JointNF
can achieve superior test accuracy while offering significant hard-
ware performance improvements.
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