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Life is Powered by Deep Learning

e Deep Neural Networks (DNNs) have achieved state-of-the-art performance
across a variety of domains
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How Deep Neural Network is Executed?

e Use a Convolutional Neural Network
(CNN) as an example

e This CNN contains four layers
o 3 convolutional layers
o 1 fully connected layer
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DNN Execution: A Matrix View
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DNN Execution: A Matrix View

Layer View Matrix View
*

Fully Connected
A

e Remaining layers follow
this pattern.
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DNN Execution: A Matrix View

Layer View Matrix View
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Deployment of DNN: Problems

e The majority of computation workloads
for DNN inference involves a series of
matrix multiplications.
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VGG-16 is a CNN with
over 150M weights
across 16 matrices



Deployment of DNN: Problems

DNN suffers due to:

o High energy consumption

o High processing latency

o High storage cost

DNN needs to maintain high accuracy
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The Era of Large Models (LMs)
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Cost of Large Models
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The Cost of Large Models
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Training GPT-4 required 25,000 A100 GPUs
over several weeks.

Cost: Renting a single high-end GPU on cloud
services like AWS can cost $3—-$5 per hour.
Training GPT-4 is estimated to cost $63-100
million on cloud computing resources.
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Efficient Al: An Emerging Area

ARCHITECTURE
Model Size FP16 FPS INT4 o i
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Design more aggressive and efficient Al model is
of paramount importance
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Efficient Al: An Emerging Area

hardware unit is growing slowly

DNN
workload DNN workload grows
exponentially

How to reduce the compute while

The amount of compute supported within a /

NYU SAI LAB maintaining a good DNN accuracy?
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Efficient Al: An Emerging Area

Research Publications on DNN Pruning and Quantization (2015-2023)
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Efficient Al has become one of the
most popular areas in Al
community.

The recent emergence of large
models has further heightened
the need for efficient Al.
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Al Tech Startups/Unicorns
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Efficient Al: An Emerging Area
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Efficient Al: Full-stack Workflow
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Full-stack Workflow

S
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Algorithmic Optimization

Distillation & Low rank

[ Graph optimization ]

[ Kernel-level optimization ]

[ Distributed system, Multicore ]
[ Single Core, SoC ]

[ Circuit-level Optimization ]

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator
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Efficient Al: Full-stack Workflow

AAL

NYU SAI LAB

Full-stack Workflow

Algorithmic Optimization
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Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator
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Algorithmic Optimization
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Efficient DNN Algorithm: Pruning

% 0.1 3 160.2] 1 (¢] 3160 1
0.2]1.2]|0.2( -1 0 (1.2 0 |-1
) Prune
DNN weights —

% -8 |-1l0.6|1.4 -8|-1]|0 (1.4

NYU SAI LAB




Efficient DNN Algorithm: Quantization
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Knowledge Distillation
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Teacher Model
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Efficient Al: Full-stack Workflow

AAL
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Full-stack Workflow

[ Graph optimization ]

[ Kernel-level optimization ]

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator

30



Graph Level Optimization

CAMEL Training
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Kernel Level Optimization
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Efficient Al: Full-stack Workflow

AAL
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Full-stack Workflow
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[ Distributed system, Multicore ]

[ Single Core, SoC ]

[ Circuit-level Optimization ]

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator
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Hardware Support for DNN

e GPU is better than CPU in terms of throughput for both Neural Network
training and inference.
o GPU leverages the highly parallelized architecture of its computing
units to handle computational intensive operations.

FP64

e However, GPU: -
o General purpose, although much more specific than CPU.
o  Still not fast and power-efficient enough.

o Does not support advanced efficient DNN algorithm.
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FP64

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT
INT INT

e Y TENSOR TENSOR

INT INT CORE CORE

INT INT
INT INT

INT INT

LY LD/ W/ LY LDF LD LDF LDV
ST ST ST ST ST ST ST ST SFU



NVIDIA

Chip size 814 mm?
On-chip memory ~50MB
Total memory ~96GB HBM

Cores 16,896 FP32 + 528
Tensor
Precision FP16/FP8/INT8
Memory 0.003
bandwidth Petabytes/sec

NYU SAI LAB

NVIDIA H100

https://www.techpowerup.com/gpu-specs/h100-sxm5-96-gb.c3974
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NVIDIA

Chip size -

On-chip memory -

Total memory 192GB HBM
Cores -
Precision FP16/FP8/FP4/INT8
Memory bandwidth 8 Terabytes/sec

NVIDIA Blackwell

https://wccftech.com/nvidia-blackwell-gpu-architecture-official-208-billion-transistors-5

NYU SAI LAB x-ai-performance-192-gb-hbm3e-memory/



Hardware Support for DNN

e ASIC-based implementations have been recently explored to accelerate the DNN inference.
o  Google’s TPU, Apple’s Neural Engine, Cerebras Al chip, ...

e FPGA-based accelerators for DNN inference have been recently developed.

o Has good programmability and flexibility
o  Short development cycles
o  Can be used as a benchmark before implementing on ASIC

Tensor Processing Unit (Google) Alveo Accelerator Card (Xilinx)

NYU SAI LAB i




Google

Chip size 790 mm?
On-chip memory 12 MB
Total memory 32GB HBM
Precision BF16/INTS
Memory 1640 TB/sec
bandwidth

NYU SAI LAB

TPU v6 (Trillium)

https://www.nextplatform.com/2024/06/10/lots-of-questions-on-googles-trillium-tpu-v6-a-few-answers/
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Cerebras Al Chips

Chip size 46,225 mm?
On-chip memory 44 GB
Cores 900,000
Memory 21 Petabytes/sec
bandwidth
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Cerebras CS-3

https://cerebras.ai/applications/high-performance-computing/
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Systolic Array

e Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982
e 2D grid of multiplier-accumulators (MACs) for matrix multiplication
e Used by Google TPU for deep learning (2017), etc

Systolic cell 2D Systolic Array
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- - PR B S B
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V =X ’ 1 1 1 1
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Bit-serial Low-precision Multiplier
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Why We Need Codesign?
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N

Joint Optimization

A

v?

Algorithmic Optimization

Distillation & Low rank

[ Graph optimization ]

[ Kernel-level optimization ]

[ Distributed system, Multicore ]
[ Single Core, SoC ]

[ Circuit-level Optimization ]




Why We Need Codesign?

V?Ienshe Sparse Sparse
e' t . .
Input 19 Input Weight Input Weight
‘ g | QO
Unstructured Structured
High accuracy Low accuracy
low hardware efficiency high hardware efficiency

Hardware architecture needs to be considered when designing efficient DNN.

NYU SAI LAB
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Column Combining

Weight Matrix Systolic Array
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Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
NYU SAI LAB implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on 44

Architectural Support for Programming Languages and Operating Systems. 2019.



Column Combining

(a) Standard

(b) Systolic Array After

Systolic Array Column Combing 3
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i 1 i————T ______ 1. larger magnitude :___ X3

X, X, X, X, X1 Xy X3%y

e Column combining can greatly increase the utilization efficiency of the systolic array

e Recently, Nvidia A100 GPU adopts a similar idea to support the balanced structured sparsity on their GPU
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Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on 45
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FPGA Accelerator

scumulator
<
P

—

FPGA Energy Efficiency  "AC |~

B ResNet-18  [1AC Yo,
[0 ResNet-50

=
o

Host AXI

JTAG to| _

e
o

[ MobileNet-v2
I LSTM L L

A
\A

o
o

NYU SAI LAB

o
»

Shift 11
. Control | Memory
Controller

©
[N

Normalized Energy Efficiency

)
o

16 20 24 28 42 48 54 60

oo Shift

Regx8

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. 2019.
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Term Quantization

8-bit uniform quantization 4-bit uniform quantization

272625242322 2120

1 00000001
Wi 2H00001100
3 00000101
W,=137 (10001001

272625242322 2120

O000000X
O000YX00
OO0000Y0X
1000Y00%

=

W, =0
W, =0
W, =0
W, =128

e Low-precision quantization leads to significant quantization error.
e Both weights and input activation are highly biased in values.
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Kung, H. T, Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized

dnns." arXiv preprint arXiv:2007.06389 (2020).
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Term Quantization
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4-bit uniform quantization
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e We can control the term-level computations by setting a group term budget.

e For a group of values, we rank and remove the small terms based on this budget.
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Kung, H. T, Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized
dnns." arXiv preprint arXiv:2007.06389 (2020).
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Term Quantization: Accelerator Design

[ Systolic Array of tMAC )
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We propose the term MAC (tMAC) for the efficient implementation of TQ.
A tMAC processes all term-pair multiplications across a group of weight and data values.
Each term is represented by their corresponding exponent (2-3 bits).
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The term accumulation can be implemented using half adders.
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T
Shift bitwidth

output

Kung, H. T, Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized
dnns." arXiv preprint arXiv:2007.06389 (2020).
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Efficient DNN Training: Forward Pass

X: input maps W: weight filters Y: output maps

e The convolutional operations during the forward propagation can be converted
into matrix multiplications

Zhang, Sai Qian, Bradley McDanel, and H. T. Kung. "Fast: Dnn training under variable precision block floating point with
NYU SAI LAB stochastic rounding." 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 50

2022.



Efficient DNN Training: Backward Pass

Input data gradient Weight gradient
Computation Computation

vy | <|W'| = |vx XT | x|VY|=|vw
X: input maps W: weight filters Y: output maps

VX: input gradient ~ VW: weight gradient VY. output gradient

e DNN backward propagation involves two matrix multiplications

Zhang, Sai Qian, Bradley McDanel, and H. T. Kung. "Fast: Dnn training under variable precision block floating point with
NYU SAI LAB stochastic rounding." 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE,

2022.

51



Efficient DNN Training: FAST Algorithm

BFP precision increases across
layer depth and training iterations
QP S E i R S

high
precision

low
precision

DNN Layer Index

mantissa
—>  bitwidth

DNN Training Iteration

e We name this approach FAST (Fast First, Accurate Second Training)
e \We linearly increase the training precision across both layer depth and training iterations

NYU SAI LAB

Zhang, Sai Qian, Bradley McDanel, and H. T. Kung. "Fast: Dnn training under variable precision block floating point with
stochastic rounding." 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE,

2022.
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Efficient DNN Training: FAST Algorithm

ResNet-18 (ImageNet) TTA of 68%

(o\ 72
o
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O
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8 w FAST-Adaptive
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O 561 — [NT-12
T — bfloat16
O 521 ~ Nvidia MP
© [ m— FP32
> 48+ r ; " "
0 2 4 6 8

Normalized Training Time

e We use Time-to-Accuracy (TTA) as the evaluation metric to compare different approaches
e Our FAST approach achieves the lowest TTA across all the numeric formats
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Zhang, Sai Qian, Bradley McDanel, and H. T. Kung. "Fast: Dnn training under variable precision block floating point with
stochastic rounding." 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE,
2022.
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Reversible DNN for Efficient On-chip Learning

Forward pass Backward pass Normalized Number of Parameters
Storage during DNN Training
Memory Memory b lSIet
! ! ! e ! 1 i . .
o | Output R ' Output ‘- Output ResNet-18 1x mm Activation
o) |G
| ResNet-50
Layer O Layer O
| (o) (L] Voot
| Input |
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Zhang, Sai Qian, et al. "CAMEL: Co-Designing Al Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.
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Reversible DNN for Efficient On-chip Learning
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Reversible DNN for Efficient On-chip Learning
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Efficient Deep Self-Supervised Learning

Change on memory usage
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“‘BIM: Block-Wise Self-Supervised Learning with Masked Image Modeling”, Yixuan Luo, Mengye Ren,

Sai Qian Zhang.
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Softmax Acceleration in Large Models
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Normalization Acceleration in Large Models
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