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Life is Powered by Deep Learning

● More desirable modern services are enabled by DNN

● Deep Neural Networks (DNNs) have achieved state-of-the-art performance 
across a variety of domains
○ Image Recognition
○ Video Processing
○ Natural Language Processing
○ Autonomous Driving

Convolutional 
Neural Network

(CNN)
‘rose’

Image Classification

Non
CNNs CNNs
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How Deep Neural Network is Executed? 

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

‘rose’
● Use a Convolutional Neural Network 

(CNN) as an example
● This CNN contains four layers 

○ 3 convolutional layers
○ 1 fully connected layer
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DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

= ?

Matrix View

Weight 
Matrix

Data 
Matrix

● Weight matrices are 
learned during training
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DNN Execution: A Matrix View
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● Weight matrices are 
learned during training 
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● Remaining layers follow 
this pattern.  
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DNN Execution: A Matrix View
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Deployment of DNN: Problems

VGG-16 is a CNN with 
over 150M weights 
across 16 matrices

● The majority of computation workloads 
for DNN inference involves a series of 
matrix multiplications.
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Deployment of DNN: Problems
● DNN suffers due to:

○ High energy consumption
○ High processing latency
○ High storage cost

● DNN needs to maintain high accuracy

20B multiply/adds 
per image

Bianco, Simone, et al. "Benchmark analysis of representative deep neural network architectures." IEEE Access 
6 (2018): 64270-64277.

The 
higher 

the 
better

The lower 
the better
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The Era of Large Models (LMs)



16

Cost of Large Models
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● 1.4e12 FLOPs to execute GPT-2.
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Transformer
(0.05B)

GPT-1
(0.11B)

BERT
(0.34B)

GPT-2
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(175B)

T-NLG
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The Cost of Large Models

● Training GPT-4 required 25,000 A100 GPUs 
over several weeks.

● Cost: Renting a single high-end GPU on cloud 
services like AWS can cost $3–$5 per hour. 
Training GPT-4 is estimated to cost $63-100 
million on cloud computing resources.
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Efficient AI: An Emerging Area

Design more aggressive and efficient AI model is 
of paramount importance

LLaMA 3.1
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Efficient AI: An Emerging Area

Moore’s 
law

DNN 
workload 

The amount of compute supported within a 
hardware unit is growing slowly

DNN workload grows 
exponentially

How to reduce the compute while 
maintaining a good DNN accuracy?
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Efficient AI: An Emerging Area

● Efficient AI has become one of the 
most popular areas in AI 
community.

● The recent emergence of large 
models has further heightened 
the need for efficient AI.
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Efficient AI: An Emerging Area

Jobs at Meta Jobs at Google
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AI Tech Startups/Unicorns 
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Efficient AI: An Emerging Area

Challenges

Accurate

Hardware 
efficient Generic

Ideal
solution
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Efficient AI: Full-stack Workflow

Circuit-level Optimization

Graph optimization

Kernel-level optimization

Fu
ll-
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Single Core, SoC

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator
Distributed system, Multicore

Quantization

Distillation & Low rank

Algorithmic Optimization

Pruning
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Algorithmic Optimization
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=H

W

C

Depthwise
Conv

=

3
3

3
3H

W

C

Pointwise
Conv

=
1

1

Standard Convolution

Depthwise Separable Convolution



27

Efficient DNN Algorithm: Pruning

DNN weights
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Efficient DNN Algorithm: Quantization

Quantize
(-10, 10)DNN weights
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Knowledge Distillation
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Efficient AI: Full-stack Workflow
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Graph Level Optimization
 CAMEL Training
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Kernel Level Optimization

MemCompute 
Core

Round 1
Step 1

Step 3
Step 2

MemCompute 
Core

Round 2
Step 4

Step 6
Step 5

MemCompute 
Core

Step 1
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MemCompute 
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Step 3 Step 4

Round 1 Round 2
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Efficient AI: Full-stack Workflow
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Hardware Support for DNN
● GPU is better than CPU in terms of throughput for both Neural Network 

training and inference. 
○ GPU leverages the highly parallelized architecture of its computing 

units to handle computational intensive operations. 
● However, GPU:

○ General purpose, although much more specific than CPU.
○ Still not fast and power-efficient enough.
○ Does not support advanced efficient DNN algorithm.
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NVIDIA
Chip size 814 mm2

On-chip memory ~50MB

Total memory ~96GB HBM

Cores 16,896 FP32 + 528 
Tensor

Precision FP16/FP8/INT8

Memory 
bandwidth

0.003 
Petabytes/sec NVIDIA H100

https://www.techpowerup.com/gpu-specs/h100-sxm5-96-gb.c3974
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NVIDIA

Chip size -

On-chip memory -

Total memory 192GB HBM

Cores -

Precision FP16/FP8/FP4/INT8

Memory bandwidth 8 Terabytes/sec
NVIDIA Blackwell

https://wccftech.com/nvidia-blackwell-gpu-architecture-official-208-billion-transistors-5
x-ai-performance-192-gb-hbm3e-memory/
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Hardware Support for DNN

Tensor Processing Unit (Google) Alveo Accelerator Card (Xilinx)

● ASIC-based implementations have been recently explored to accelerate the DNN inference.
○ Google’s TPU, Apple’s Neural Engine, Cerebras AI chip, …

● FPGA-based accelerators for DNN inference have been recently developed.
○ Has good programmability and flexibility
○ Short development cycles
○ Can be used as a benchmark before implementing on ASIC
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Google

TPU v6 (Trillium)

Chip size 790 mm2

On-chip memory 112 MB

Total memory 32GB HBM

Precision BF16/INT8

Memory 
bandwidth

1640 TB/sec

https://www.nextplatform.com/2024/06/10/lots-of-questions-on-googles-trillium-tpu-v6-a-few-answers/
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Cerebras AI Chips

Cerebras CS-3

Chip size 46,225 mm2

On-chip memory 44 GB

Cores 900,000

Memory 
bandwidth

21 Petabytes/sec

https://cerebras.ai/applications/high-performance-computing/
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Systolic Array 
● Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982
● 2D grid of multiplier-accumulators (MACs) for matrix multiplication
● Used by Google TPU for deep learning (2017), etc

2D Systolic Array

x

v

z = w·x + y
v = x

z

Systolic cell

y

TPU (Google)
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Bit-serial Low-precision Multiplier
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Why We Need Codesign?

Circuit-level Optimization

Graph optimization

Kernel-level optimization

Jo
in

t O
pt

im
iz

at
io

n
Single Core, SoC

Distributed system, Multicore

Quantization

Distillation & Low rank

Algorithmic Optimization

Pruning



43

Why We Need Codesign?

Input
Dense
Weight Input

Sparse
Weight

0
Input

0

Unstructured

Sparse
Weight

Structured

High accuracy
low hardware efficiency

Low accuracy
high hardware efficiency

Hardware architecture needs to be considered when designing efficient DNN.
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Column Combining
 Sparse

Weight Matrix

Column Combining
8x reduction in size

 Packed Format in 
Systolic Array

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array 
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on 
Architectural Support for Programming Languages and Operating Systems. 2019.
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Column Combining

x1 x2 x3 x4
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● Column combining can greatly increase the utilization efficiency of the systolic array
● Recently, Nvidia A100 GPU adopts a similar idea to support the balanced structured sparsity on their GPU

Yin

x3 x4

Yout

x3 x4

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array 
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on 
Architectural Support for Programming Languages and Operating Systems. 2019.
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FPGA Accelerator

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array 
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on 
Architectural Support for Programming Languages and Operating Systems. 2019.
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Term Quantization
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● Low-precision quantization leads to significant quantization error.
● Both weights and input activation are highly biased in values.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized 
dnns." arXiv preprint arXiv:2007.06389 (2020).
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Term Quantization
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● We can control the term-level computations by setting a group term budget.
● For a group of values, we rank and remove the small terms based on this budget.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized 
dnns." arXiv preprint arXiv:2007.06389 (2020).
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Term Quantization: Accelerator Design
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● We propose the term MAC (tMAC) for the efficient implementation of TQ.
● A tMAC processes all term-pair multiplications across a group of weight and data values.
● Each term is represented by their corresponding exponent (2-3 bits).
● The term accumulation can be implemented using half adders.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized 
dnns." arXiv preprint arXiv:2007.06389 (2020).
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Efficient DNN Training: Forward Pass

● The convolutional operations during the forward propagation can be converted 
into matrix multiplications

X Y=W

X: input maps W: weight filters Y: output maps

Zhang, Sai Qian, Bradley McDanel, and H. T. Kung. "Fast: Dnn training under variable precision block floating point with 
stochastic rounding." 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 
2022.
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Efficient DNN Training: Backward Pass

  XWT
  Y =

Input data gradient 
Computation

● DNN backward propagation involves two matrix multiplications

X: input maps W: weight filters Y: output maps
X: input gradient W: weight gradient Y: output gradient

XT =  Y    W

Weight gradient 
Computation

Zhang, Sai Qian, Bradley McDanel, and H. T. Kung. "Fast: Dnn training under variable precision block floating point with 
stochastic rounding." 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 
2022.
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Efficient DNN Training: FAST Algorithm
BFP precision increases across 

layer depth and training iterations

DNN Training Iteration
D

N
N
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x high 

precision

mantissa 
bitwidth

low 
precision

● We name this approach FAST (Fast First, Accurate Second Training)
● We linearly increase the training precision across both layer depth and training iterations

Zhang, Sai Qian, Bradley McDanel, and H. T. Kung. "Fast: Dnn training under variable precision block floating point with 
stochastic rounding." 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 
2022.
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Efficient DNN Training: FAST Algorithm

● We use Time-to-Accuracy (TTA) as the evaluation metric to compare different approaches
● Our FAST approach achieves the lowest TTA across all the numeric formats

Zhang, Sai Qian, Bradley McDanel, and H. T. Kung. "Fast: Dnn training under variable precision block floating point with 
stochastic rounding." 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 
2022.
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Reversible DNN for Efficient On-chip Learning

1x
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Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE 
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.
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Reversible DNN for Efficient On-chip Learning
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Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE 
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.
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Reversible DNN for Efficient On-chip Learning
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Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE 
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.
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Efficient Deep Self-Supervised Learning 

“BIM: Block-Wise Self-Supervised Learning with Masked Image Modeling”, Yixuan Luo, Mengye Ren, 
Sai Qian Zhang.
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Softmax Acceleration in Large Models

“Hyft: A Reconfigurable Softmax Accelerator with Hybrid Numeric Format for both Training and Inference”, 
Tianhua Xia, Sai Qian Zhang, ISLPED’24

(a) (b) (c)

Hyft system
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Normalization Acceleration in Large Models

“HAAN: A Holistic Approach for Accelerating Normalization Operations in Large Language Models”, Tianfan 
Peng,  Jiajun Wu, Tianhua Xia, Sai Qian Zhang, in DATE 2025.

● We adopt the principles of algorithm and hardware co-design, 
introducing a holistic normalization accelerating method.

● We leverages on the strong correlation observed in 
normalization statistics across consecutive layers, enabling the 
bypassing of normalization computation through the estimation 
of statistics 


