
Introduction

ECE-GY 9483/CSCI-GA 3033
Special Topics in Electrical Engineering EFFICIENT AI AND

HARDWARE ACCELERATOR DESIGN

2

Life is Powered by Deep Learning

● More desirable modern services are enabled by DNN

● Deep Neural Networks (DNNs) have achieved state-of-the-art performance
across a variety of domains
○ Image Recognition
○ Video Processing
○ Natural Language Processing
○ Autonomous Driving

Convolutional
Neural Network

(CNN)
‘rose’

Image Classification

Non
CNNs CNNs

3

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

‘rose’
● Use a Convolutional Neural Network

(CNN) as an example
● This CNN contains four layers

○ 3 convolutional layers
○ 1 fully connected layer

4

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

5

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

6

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

7

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

8

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

‘rose’

9

DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

= ?

Matrix View

Weight
Matrix

Data
Matrix

● Weight matrices are
learned during training

10

DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

Matrix View

● Weight matrices are
learned during training

=

11

DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

Matrix View

● Remaining layers follow
this pattern.

=

=

= ?

12

DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

Matrix View

● Remaining layers follow
this pattern

=

=

=

=
‘rose’

13

Deployment of DNN: Problems

VGG-16 is a CNN with
over 150M weights
across 16 matrices

● The majority of computation workloads
for DNN inference involves a series of
matrix multiplications.

14

Deployment of DNN: Problems
● DNN suffers due to:

○ High energy consumption
○ High processing latency
○ High storage cost

● DNN needs to maintain high accuracy

20B multiply/adds
per image

Bianco, Simone, et al. "Benchmark analysis of representative deep neural network architectures." IEEE Access
6 (2018): 64270-64277.

The
higher

the
better

The lower
the better

15

The Era of Large Models (LMs)

16

Cost of Large Models

2017

36

72

108

144

180

M
od

el
 s

iz
e

(b
ill

io
ns

)

● 1.4e12 FLOPs to execute GPT-2.

2018 2020 20212019

Transformer
(0.05B)

GPT-1
(0.11B)

BERT
(0.34B)

GPT-2
(1.5B)

MegaTron-LM
(8.3B)

GPT-3
(175B)

T-NLG
(17B)

GPT-4
(>1T)

17

The Cost of Large Models

● Training GPT-4 required 25,000 A100 GPUs
over several weeks.

● Cost: Renting a single high-end GPU on cloud
services like AWS can cost $3–$5 per hour.
Training GPT-4 is estimated to cost $63-100
million on cloud computing resources.

18

Efficient AI: An Emerging Area

Design more aggressive and efficient AI model is
of paramount importance

LLaMA 3.1

19

Efficient AI: An Emerging Area

Moore’s
law

DNN
workload

The amount of compute supported within a
hardware unit is growing slowly

DNN workload grows
exponentially

How to reduce the compute while
maintaining a good DNN accuracy?

20

Efficient AI: An Emerging Area

● Efficient AI has become one of the
most popular areas in AI
community.

● The recent emergence of large
models has further heightened
the need for efficient AI.

21

Efficient AI: An Emerging Area

Jobs at Meta Jobs at Google

22

AI Tech Startups/Unicorns

23

Efficient AI: An Emerging Area

Challenges

Accurate

Hardware
efficient Generic

Ideal
solution

24

Efficient AI: Full-stack Workflow

Circuit-level Optimization

Graph optimization

Kernel-level optimization

Fu
ll-

st
ac

k
W

or
kf

lo
w

Single Core, SoC

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator
Distributed system, Multicore

Quantization

Distillation & Low rank

Algorithmic Optimization

Pruning

25

Efficient AI: Full-stack Workflow

Circuit-level Optimization

Graph optimization

Kernel-level optimization

Fu
ll-

st
ac

k
W

or
kf

lo
w

Quantization

Distillation & Low rank

Algorithmic Optimization

Single Core, SoC

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator

Pruning

Distributed system, Multicore

26

Algorithmic Optimization

Convolution

=H

W

C

Depthwise
Conv

=

3
3

3
3H

W

C

Pointwise
Conv

=
1

1

Standard Convolution

Depthwise Separable Convolution

27

Efficient DNN Algorithm: Pruning

DNN weights

0.1 3 1

0.2 -1

-8 1.40.6-1

Prune
1.2 0.2

0.2 0 3 1

0 -1

-8 1.40-1

1.2 0

0

28

Efficient DNN Algorithm: Quantization

Quantize
(-10, 10)DNN weights

8.5 3 1

3.9 -1

8.1 1.40.6-1

1.2 4.6

0.2 9 3 1

4 -1

8 11-1

1 5

0

29

Knowledge Distillation

30

Efficient AI: Full-stack Workflow

Circuit-level Optimization

Fu
ll-

st
ac

k
W

or
kf

lo
w Pruning

Quantization

Distillation & Low rank

Single Core, SoC

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator

Algorithmic Optimization

Distributed system, Multicore

Graph optimization

Kernel-level optimization

31

Graph Level Optimization
 CAMEL Training

32

Kernel Level Optimization

MemCompute
Core

Round 1
Step 1

Step 3
Step 2

MemCompute
Core

Round 2
Step 4

Step 6
Step 5

MemCompute
Core

Step 1

Step 2
MemCompute

Core
Step 3 Step 4

Round 1 Round 2

33

Efficient AI: Full-stack Workflow

Fu
ll-

st
ac

k
W

or
kf

lo
w Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator
Circuit-level Optimization

Single Core, SoC

Distributed system, Multicore

Graph optimization

Kernel-level optimization

Pruning

Quantization

Distillation & Low rank

Algorithmic Optimization

34

Hardware Support for DNN
● GPU is better than CPU in terms of throughput for both Neural Network

training and inference.
○ GPU leverages the highly parallelized architecture of its computing

units to handle computational intensive operations.
● However, GPU:

○ General purpose, although much more specific than CPU.
○ Still not fast and power-efficient enough.
○ Does not support advanced efficient DNN algorithm.

35

NVIDIA
Chip size 814 mm2

On-chip memory ~50MB

Total memory ~96GB HBM

Cores 16,896 FP32 + 528
Tensor

Precision FP16/FP8/INT8

Memory
bandwidth

0.003
Petabytes/sec NVIDIA H100

https://www.techpowerup.com/gpu-specs/h100-sxm5-96-gb.c3974

36

NVIDIA

Chip size -

On-chip memory -

Total memory 192GB HBM

Cores -

Precision FP16/FP8/FP4/INT8

Memory bandwidth 8 Terabytes/sec
NVIDIA Blackwell

https://wccftech.com/nvidia-blackwell-gpu-architecture-official-208-billion-transistors-5
x-ai-performance-192-gb-hbm3e-memory/

37

Hardware Support for DNN

Tensor Processing Unit (Google) Alveo Accelerator Card (Xilinx)

● ASIC-based implementations have been recently explored to accelerate the DNN inference.
○ Google’s TPU, Apple’s Neural Engine, Cerebras AI chip, …

● FPGA-based accelerators for DNN inference have been recently developed.
○ Has good programmability and flexibility
○ Short development cycles
○ Can be used as a benchmark before implementing on ASIC

38

Google

TPU v6 (Trillium)

Chip size 790 mm2

On-chip memory 112 MB

Total memory 32GB HBM

Precision BF16/INT8

Memory
bandwidth

1640 TB/sec

https://www.nextplatform.com/2024/06/10/lots-of-questions-on-googles-trillium-tpu-v6-a-few-answers/

39

Cerebras AI Chips

Cerebras CS-3

Chip size 46,225 mm2

On-chip memory 44 GB

Cores 900,000

Memory
bandwidth

21 Petabytes/sec

https://cerebras.ai/applications/high-performance-computing/

40

Systolic Array
● Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982
● 2D grid of multiplier-accumulators (MACs) for matrix multiplication
● Used by Google TPU for deep learning (2017), etc

2D Systolic Array

x

v

z = w·x + y
v = x

z

Systolic cell

y

TPU (Google)

41

Bit-serial Low-precision Multiplier

42

Why We Need Codesign?

Circuit-level Optimization

Graph optimization

Kernel-level optimization

Jo
in

t O
pt

im
iz

at
io

n
Single Core, SoC

Distributed system, Multicore

Quantization

Distillation & Low rank

Algorithmic Optimization

Pruning

43

Why We Need Codesign?

Input
Dense
Weight Input

Sparse
Weight

0
Input

0

Unstructured

Sparse
Weight

Structured

High accuracy
low hardware efficiency

Low accuracy
high hardware efficiency

Hardware architecture needs to be considered when designing efficient DNN.

44

Column Combining
 Sparse

Weight Matrix

Column Combining
8x reduction in size

 Packed Format in
Systolic Array

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. 2019.

45

Column Combining

x1 x2 x3 x4

-3

-2

1

4

-1

-4

3

-6

x1 x2 x3 x4

(b) Systolic Array After
Column Combing

(a) Standard
Systolic Array

Column
Combining -6

-3

0

4

0

-2

1

0

0

0

-64

-1

-4

03

 1

-6 kept due to
larger magnitude

● Column combining can greatly increase the utilization efficiency of the systolic array
● Recently, Nvidia A100 GPU adopts a similar idea to support the balanced structured sparsity on their GPU

Yin

x3 x4

Yout

x3 x4

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. 2019.

46

FPGA Accelerator

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. 2019.

47

Term Quantization

24 21 2023 22

0 1
1 0 0
1 0 1
0 0 1

0 0
0
0
0

0
1
0
1

W1 =
1

W2 = 12
W3 =

5
W4 = 137

8-bit uniform quantization
252627

0
0
0
0

0
0
0
0

0
0
0
1

0 1
1 0 0
1 0 1
0 0 1

0 0
0
0
0

0
1
0
1

0
0
0
0

0
0
0
0

0
0
0
1

4-bit
W’1 = 0
W’2 = 0
W’3 = 0
W’4 = 128

4-bit uniform quantization
24 21 2023 22252627

● Low-precision quantization leads to significant quantization error.
● Both weights and input activation are highly biased in values.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized
dnns." arXiv preprint arXiv:2007.06389 (2020).

48

Term Quantization
21 2022

1 0
1 0 1
0

W
2
5

W’
2
4

21 2022

0 1
1 1

X
9
3

X’
8
2

23

0
0

0
0

0
1
23

[21,22]

[23,21]

21x23+22x2
1

dot productBudget = 2

4-bit uniform quantization
24 21202322

0 1
1 0 0
1 0 1
0 0 1

0 0
0
0
0

0
1
0
1

252627
0
0
0
0

0
0
0
0

0
0
0
1

24 21202322

1
1
0

0 0
0
0
0

0
1
0
1

252627
0
0
0
0

0
0
0
0

0
0
0
1

0 1
0 0
0 1
0 1

TQ with a budget = 4

W’1 = 0
W’2 = 0
W’3 = 0
W’4 = 128

W’1 = 0
W’2 = 12
W’3 = 0
W’4 = 136

● We can control the term-level computations by setting a group term budget.
● For a group of values, we rank and remove the small terms based on this budget.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized
dnns." arXiv preprint arXiv:2007.06389 (2020).

49

Term Quantization: Accelerator Design

Weight exponent queue +

Data exponent queues

4 43 22 11 0
+++++ + + +Sign

+3
0 tMAC

YoutTerm
accumulator

Yin

+
+2

1 +
+4

0 +
+1

0 +

 0 2 3 0
Weight index queue

 1 1 3 0

Systolic Array of tMAC

tMAC tMAC

tMAC tMAC

tMAC tMAC

tMAC

tMAC

tMAC

...

...

...

...

...

● We propose the term MAC (tMAC) for the efficient implementation of TQ.
● A tMAC processes all term-pair multiplications across a group of weight and data values.
● Each term is represented by their corresponding exponent (2-3 bits).
● The term accumulation can be implemented using half adders.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized
dnns." arXiv preprint arXiv:2007.06389 (2020).

50

Efficient DNN Training: Forward Pass

● The convolutional operations during the forward propagation can be converted
into matrix multiplications

X Y=W

X: input maps W: weight filters Y: output maps

Zhang, Sai Qian, Bradley McDanel, and H. T. Kung. "Fast: Dnn training under variable precision block floating point with
stochastic rounding." 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE,
2022.

51

Efficient DNN Training: Backward Pass

 XWT
 Y =

Input data gradient
Computation

● DNN backward propagation involves two matrix multiplications

X: input maps W: weight filters Y: output maps
X: input gradient W: weight gradient Y: output gradient

XT = Y W

Weight gradient
Computation

Zhang, Sai Qian, Bradley McDanel, and H. T. Kung. "Fast: Dnn training under variable precision block floating point with
stochastic rounding." 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE,
2022.

52

Efficient DNN Training: FAST Algorithm
BFP precision increases across

layer depth and training iterations

DNN Training Iteration
D

N
N

 L
ay

er
 In

de
x high

precision

mantissa
bitwidth

low
precision

● We name this approach FAST (Fast First, Accurate Second Training)
● We linearly increase the training precision across both layer depth and training iterations

Zhang, Sai Qian, Bradley McDanel, and H. T. Kung. "Fast: Dnn training under variable precision block floating point with
stochastic rounding." 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE,
2022.

53

Efficient DNN Training: FAST Algorithm

● We use Time-to-Accuracy (TTA) as the evaluation metric to compare different approaches
● Our FAST approach achieves the lowest TTA across all the numeric formats

Zhang, Sai Qian, Bradley McDanel, and H. T. Kung. "Fast: Dnn training under variable precision block floating point with
stochastic rounding." 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE,
2022.

54

Reversible DNN for Efficient On-chip Learning

1x

Normalized Number of Parameters
Storage during DNN Training

1.67x

6.6x

13.4x

ResNet-18

ResNet-34

ResNet-50

VGG-16

Activation
Weight

Output

Memory

Layer 0

Input

Memory

Layer 1Layer 1

Output

Layer 0

Memory

Layer 1

Layer 0

Memory

Layer 1

Layer 0

Output Output

Forward pass Backward pass

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

55

Reversible DNN for Efficient On-chip Learning

Reversible
Block

Weight
update

1. Recompute
the input

y

x

Reversible
Block

gout

gin

Reversible
Block

gout

2. Compute
input gradient

3. Compute weight
gradient and update

x

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

56

Reversible DNN for Efficient On-chip Learning

Input

Output

Softmax

Reversible
Block

Reversible
Block

Pretrained
DNN Block

Pretrained
DNN Block

Forward pass Backward pass

Input

Output

Softmax

Reversible
Block

Reversible
Block

Pretrained
DNN Block

Pretrained
DNN Block

Weight
update

Forward Pass Backward Pass
(Phase 1)

Backward Pass
(Phase 2)

po
ol

in
g

po
ol

in
g

po
ol

in
g

po
ol

in
g

Input

Output

Softmax

Reversible
Block

Pretrained
DNN Block

Pretrained
DNN Block

Weight
update

po
ol

in
g

po
ol

in
g

Reversible
Block

pooling

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

57

Efficient Deep Self-Supervised Learning

“BIM: Block-Wise Self-Supervised Learning with Masked Image Modeling”, Yixuan Luo, Mengye Ren,
Sai Qian Zhang.

58

Softmax Acceleration in Large Models

“Hyft: A Reconfigurable Softmax Accelerator with Hybrid Numeric Format for both Training and Inference”,
Tianhua Xia, Sai Qian Zhang, ISLPED’24

(a) (b) (c)

Hyft system

59

Normalization Acceleration in Large Models

“HAAN: A Holistic Approach for Accelerating Normalization Operations in Large Language Models”, Tianfan
Peng, Jiajun Wu, Tianhua Xia, Sai Qian Zhang, in DATE 2025.

● We adopt the principles of algorithm and hardware co-design,
introducing a holistic normalization accelerating method.

● We leverages on the strong correlation observed in
normalization statistics across consecutive layers, enabling the
bypassing of normalization computation through the estimation
of statistics

