
Kelle: Co-design KV Caching and eDRAM for Efficient LLM
Serving in Edge Computing

Tianhua Xia
Tandon School of Engineering

New York University
New York, NY, USA
tx856@nyu.edu

Sai Qian Zhang
Tandon School of Engineering

New York University
New York, NY, USA
sai.zhang@nyu.edu

Abstract
Running Large Language Models (LLMs) on edge devices is crucial
for reducing latency, improving real-time processing, and enhanc-
ing privacy. By performing inference directly on the device, data
does not need to be sent to the cloud, ensuring faster responses
and reducing reliance on network connectivity. However, imple-
menting LLMs on edge devices presents challenges, particularly
with managing key-value (KV) caches, which plays a pivotal role in
LLM serving. As the input text lengthens, the size of the KV cache
increases linearly with the sequence length, leading to a significant
memory footprint and data access costs. On the other hand, edge
devices have limited memory and computational power, making
it hard to store and efficiently access the large caches needed for
LLM inference.

To mitigate the substantial overhead caused by KV cache, we
propose using embedded DRAM (eDRAM) as the primary storage
for LLM serving in edge device, which offers higher storage density
compared to SRAM. However, to ensure data integrity, eDRAM
needs periodic refresh operations, which are power-intensive. To
reduce eDRAM costs and improve overall system performance, we
propose Kelle, a software-hardware co-design solution optimized
for deploying LLMs on eDRAM-based edge systems. Combined
with our fine-grained memory eviction, recomputation, and refresh
control algorithms, the Kelle accelerator delivers a 3.9× speedup
and 4.5× energy savings compared to existing baseline solutions.

CCS Concepts
• Computer systems organization→ Neural networks.

Keywords
Large Language Model, Embedded DRAM
ACM Reference Format:
Tianhua Xia and Sai Qian Zhang. 2025. Kelle: Co-design KV Caching and
eDRAM for Efficient LLM Serving in Edge Computing. In 58th IEEE/ACM
International Symposium on Microarchitecture (MICRO ’25), October 18–22,
2025, Seoul, Republic of Korea. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3725843.3756071

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1573-0/2025/10
https://doi.org/10.1145/3725843.3756071

1 Introduction
Large Language Models (LLMs) have demonstrated remarkable
capabilities across a wide range of domains. While cloud-based de-
ployments offer advantages like increased processing power, they
also come with limitations, including high communication latency
and security risks. As LLMs continue to evolve, it is increasingly im-
portant to bring their capabilities directly to edge devices [69]. The
integration of LLMs into edge devices not only broadens their ac-
cessibility but also ensures robust, customized experiences tailored
to individual and industrial needs. This trend is gaining traction not
only in academia [12, 25, 90, 91, 94], but also in the industry, where
leading companies like Intel [67], NVIDIA [2], Microsoft [77], and
Qualcomm [70] are actively exploring similar solutions.

However, implementing LLMs on edge devices presents chal-
lenges, particularly with managing key-value (KV) caches [65],
which play a critical role to enhance LLM token generation speed.
This mechanism involves storing previously computed Key and
Value vectors (KV vectors) during attention calculations and reusing
them for generating subsequent tokens. By doing so, it avoids recal-
culating vectors for earlier tokens with each new token generation.
On the other hand, the KV caching incurs a significant memory
footprint that grows rapidly as both the model size and the length
of generated text increase [32, 99]. For example, when LLaMA 2-
7B processes a sequence with the length of 8192 in FP16, the KV
cache consumes 4GB of memory, causing the total execution la-
tency to be primarily limited by frequent memory access between
on-chip SRAM and off-chip DRAM [59, 90]. This becomes partic-
ularly problematic in resource-constrained systems with limited
on-chip SRAM capacity, such as edge devices [99]. For example, the
Jetson Orin NX edge GPU has only 4MB L3 cache [2].

A simple way to address this issue is by increasing the on-chip
SRAM size, which effectively reduces costly off-chip memory ac-
cess and enhances overall system performance [15, 76]. However,
edge devices have limited area and power budgets, and expanding
SRAM reduces the resources available for other critical components,
such as computational cores [14, 39, 79]. Alternatively, this study
explores the use of embedded DRAM (eDRAM) as the primary on-
chip storage medium for KV vectors during LLM execution. With
fewer transistors per memory cell, such as 3T for eDRAM cells
compared to 6T for SRAM cells, eDRAM provides a higher data
storage density, resulting in more than twice the capacity [15, 28].
This increased storage density enables a greater on-chip storage
capacity within the same chip area. Moreover, eDRAM also offers
much lower leakage power than SRAM (around 3.5× according to
prior work [17]). These benefits make eDRAM an attractive option
for storing KV vectors in edge devices.

1

https://doi.org/10.1145/3725843.3756071
https://doi.org/10.1145/3725843.3756071
https://doi.org/10.1145/3725843.3756071

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianhua Xia and Sai Qian Zhang

N
orm

alization

KV
cache

qN

kN

vN

LLM

KV vectors of
previous tokens

KV vector of
current token

KV
cache

WK

Wv

WQ

(a) (b)

Current
token

xN

Next
token

S
oftm

ax

Wo

SA

Figure 1: (a) LLM token generation. (b) KV cache for interme-
diate data storage, where N denotes the token index.

However, a key drawback of eDRAM is the need for periodic
refreshes to prevent data loss from leakage. Specifically, refreshing
eDRAM cells requires a read-write operation, increasing latency
and power consumption, which can significantly impact the effi-
cient deployment of LLMs. To address the challenges of integrating
eDRAM, we co-design the KV caching algorithm with the eDRAM-
based hardware system, enabling a highly efficient KV cache im-
plementation without compromising accuracy. Our contributions
are summarized:

• We propose Kelle, an algorithm-system co-design solution
for in-device LLM serving on eDRAM-based edge systems.
To optimize eDRAM integration cost and improve LLM exe-
cution efficiency, we introduce attention-based eviction and
recomputation policy (AERP) and two-dimensional adaptive
refresh policy (2DRP) for efficient KV cache implementation
(Section 4.1 and 4.2).

• We design a Kelle accelerator that utilizes eDRAM as the
primary on-chip storage, featuring a customized memory
layout. To maximize efficiency, the accelerator integrates a
dedicated eDRAM controller and a systolic evictor for effi-
cient AERP and 2DRP implementation (Section 5).

• We also introduce the Kelle scheduler (Section 6), which
adopts an efficient computation pattern to optimize eDRAM
data lifetime and LLM serving latency, significantly reducing
both eDRAM refresh energy and memory traffic.

• The evaluation results show that Kelle achieves a 3.9× speedup
and 4.5× energy savings compared to other baseline hard-
ware platforms, while maintaining a negligible impact on
LLM accuracy (Section 7, 8).

2 Background and Related Work
2.1 LLMWorkflow
Modern LLMs (e.g., Llama series [74, 75], GPT series [11, 65]) are
constructed as a stack of transformer decoders, with each decoder
comprising two fundamental components: a Self-Attention (SA)
block and a feed forward network (FFN). During the LLM serving
process, the input of the SA block is first multiplied with three
weight matrices 𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉 , yielding the outputs termed
query (𝑞), key (𝑘), and value (𝑣), respectively. The resulting 𝑞 and 𝑘 ,
in combination with 𝑣 , will then undergo multiplication, softmax,
and residual addition to generate the SA output. The output from
the SA will then be passed to the FFN for further processing, which
typically involves a standard MLP [63, 65] or gated MLP [45, 74, 75].

Q

C/H
1

KT

N-1 1

✖ V
1

✖ 1
q

N

A N,n

N
-1

N
N

-1A
y

C
/H

N
h

vN
h

C/H

kn
h kh

N

vn
h

h

C/H

N
h

Figure 2: An example on KV vector computation.

The FFN consists of multiple fully connected (FC) layers along with
an intermediate activation function, such as GeLU [31].

LLM serving involves two main stages: pre-filling and decoding.
In the pre-filling stage, the model processes the context tokens in
parallel. During the decoding stage, the model predicts the next
token based on the current and previous tokens. This is done by
combining the current input with information from previous tokens,
expressed in terms of their Key and Value (KV) vectors. This process
is repeated in an auto-regressive manner (Figure 1 (a)).

2.2 KV Caching
During the decoding stage, the KV vectors of each newly generated
token are stored in a KV cache to enhance generation speed, as
shown in Figure 1 (b). By doing so, it avoids recalculating vectors
for earlier tokens with each new token generation. Specifically, to
produce the output of an LLM block, the input vector of Nth token,
with a length𝐶 , is multiplied by𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 to generate three
vectors: query 𝑞𝑁 , key 𝑘𝑁 , and value 𝑣𝑁 , each with dimensions
1 × 𝐶 , where 𝐶 denotes the channel size, as shown in Figure 1
(b). 𝑞𝑁 , together with other KV vectors are then split along the
channel dimension into multiple parts, each has a dimension of
1× 𝐶

𝐻
, where 𝐻 denotes number of heads. The resulting vectors for

head h are denoted as 𝑞ℎ
𝑁
, 𝑘ℎ
𝑁
, 𝑣ℎ
𝑁
, respectively. The KV vectors from

the previous 𝑁 − 1 tokens are then loaded from memory. For each
head h, the dot products are then performed between 𝑞ℎ

𝑁
and each

of the key vectors 𝑘ℎ𝑛 , 1 ≤ 𝑛 ≤ 𝑁 , and the result is passed through
a softmax function, yielding a vector of attention scores, denoted
as 𝐴ℎ

𝑁
, with dimensions of 1 × 𝑁 . Next, the attention score vector

is used to compute a dot product with each of the value vectors
𝑣ℎ𝑛 , 1 ≤ 𝑛 ≤ 𝑁 , producing a result vector 𝑦ℎ

𝑁
of length 𝐶

𝐻
. 𝑦ℎ
𝑁
will

then be concatenated across multiple heads, the resulting vector
𝑦𝑁 which is further multiplied with𝑊𝑂 . The process is illustrated
in Figure 2 and can be represented by the following equations:

𝐴ℎ𝑁 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ([𝑞ℎ⊤𝑁 𝑘
ℎ
1 , 𝑞

ℎ⊤
𝑁 𝑘

ℎ
2 , ..., 𝑞

ℎ⊤
𝑁 𝑘

ℎ
𝑁]) (1)

𝑦ℎ𝑁 =
∑︁

1≤𝑛≤𝑁
(𝐴ℎ𝑁,𝑛 · 𝑣

ℎ
𝑛) (2)

where𝐴ℎ
𝑁,𝑛

represents the 𝑛-th element of𝐴ℎ
𝑁
. As per Equation 1

and Equation 2, we notice that the relative order of KV vector
pairs [𝑘ℎ𝑛 , 𝑣ℎ𝑛] does not affect the decoding computation. In other
words, if we swap the values of two pairs of KV vectors (e.g., swap
[𝑘ℎ1 , 𝑣ℎ1] with [𝑘ℎ2 , 𝑣ℎ2]), the result 𝑦ℎ

𝑁
produced using Equation 1

and 2 remains unchanged.
KV cache compression techniques can be broadly classified into

two approaches: token dropping [27, 44, 47, 83, 88, 98] and KV cache
quantization [32, 48, 82]. The token dropping strategy identifies

2

Kelle: Co-design KV Caching and eDRAM for Efficient LLM Serving in Edge Computing MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

Table 1: Comparison of SRAM and eDRAM.

65nm Area Access Access Leakage Refresh Retention
4MB Latency Energy Power Energy Time
SRAM 7.3𝑚𝑚2 2.6ns 185.9 pJ/byte 415𝑚𝑊 NA NA
eDRAM 3.2𝑚𝑚2 1.9ns 84.8 pJ/byte 154𝑚𝑊 1.14 mJ 45 𝜇𝑠 [38]

and permanently discards unimportant tokens, making them inac-
cessible thereafter. StreamLLM [83] identifies sink tokens, which
are tokens at the start of a sequence that are critical for LLM per-
formance, and preserves recent tokens to maintain performance.
H2O [98] identifies heavy hitter tokens that have high accumulated
attention scores. KIVI [49] groups the KV vectors channel-wise to
achieve 2-bit asymmetric quantization. QuaRot [6] utilizes zero-
shot Hadamard transformation to reduce the outliers in the model
and enables 4-bit quantization. Speculative decoding [33, 34, 42, 51]
present another inference technique that accelerates LLMs by using
a lightweight draft model to propose multiple tokens, which are
then selectively verified by the full model. Kelle can be adopted in
orthogonal with the speculative decoding techniques.

2.3 Embedded DRAM
Various eDRAM circuit designs [28, 89] have emerged as alterna-
tives to SRAM, with some requiring only two transistors. Among
these, 3T-eDRAM stands out, offering over twice the density and re-
ducing static power dissipation by 3.5× [13, 17] compared to SRAM.
Table 1 presents a comparison between 3T-eDRAM and SRAM, with
results simulated using Destiny [60] on a 65nm technology node.
The advantages of eDRAM, including higher storage density, lower
access latency and energy, make it an attractive choice for LLM
implementation. Although eDRAM provides several advantages,
a serious drawback is the need for periodic refreshes to prevent
data corruption caused by charge leakage. As a result, eDRAM is
best suited for storing large amounts of transient data, where
frequent refreshes can be avoided.

Research has explored using eDRAM in accelerator systems to
facilitate CNN computation [15, 54, 76, 97], with proposed methods
to mitigate refresh power overhead. DaDianNao [15] partitions
eDRAM into banks to mitigate refresh failures but does not address
the challenges of refresh energy consumption or data retention.
RANA [76] injects the bit retention errors during the training pro-
cess of CNN to mitigate the accuracy drop caused by low refresh fre-
quency. CAMEL [97] optimizes CNN model architecture to shorten
the data lifetime during training. While prior research has shown
the efficiency of eDRAM in Convolutional Neural Network (CNN)
inference and training, its potential has yet to be explored for LLMs.
In contrast, Kelle focuses onminimizing the off-chip memory access
of KV cache in LLMs using eDRAM, an area previously unexplored.

2.4 Edge LLM Accelerator
To enable deployment of LLMs on edge devices, several studies
have proposed methods to improve the accuracy of quantized
transformers [23, 30, 40, 46, 50, 57, 85, 92, 100]. Tender [40] sug-
gests a hardware-efficient LLM quantization method by making the
scale factor a power of two. COMET [46] designs efficient mixed-
precision GPU kernels for 4-bit LLM quantization. Other works,
such as FlexGen [68], InfiniGen [41], InstInfer [56], LLM.npu [86],

0.0

0.4

0.8

1.2

10
24

20
48

40
96

81
92

LLaMA2-7B

N
o

rm
. L

at
en

cy

4MB 8MB

0%

50%

100%

10
24

20
48

40
96

81
92

10
24

20
48

40
96

81
92

LLaMA2-7B LLaMA2-13BE
n

er
gy

 B
re

a
kd

ow
n Refresh DRAM Access

Buffer Access Computing

(a) (c)

0
10
20
30

eD
R

A
M

S
R

A
MA

re
a

 (
m

m
2)

Logic
Buffer
DRAM

(b)

Figure 3: (a) Normalized latency of edge systems with 4MB
vs. 8MB SRAM across models and sequence lengths. (b) Area
breakdown of the edge systems with 8MB eDRAM and 8MB
SRAM. Red line is the area budget. (c) Energy breakdown of
the edge system integrating eDRAM. The decoding lengths
are shown with a prefilling length of 512. An 8MB eDRAM is
used to store KV cache for a subset of layers during decoding.
The reported DRAM energy accounts for both model weight
access and KV cache offloading from eDRAM.

explore the model offloading strategy between on-chip units and
main storage for efficient LLM deployment in resource constraint
devices. Cambricon-LLM [90] proposes a chiplet-based hybrid ar-
chitecture with NPU and a dedicated NAND flash chip to enable
efficient on-device inference.

3 Why Use eDRAM for LLMs on Edge Devices?
3.1 Benefits and Challenges of Expanding

On-Chip Memory
As shown by earlier research [90, 93, 99], the speed of serving LLMs
is significantly constrained by the bandwidth of off-chip memory. In
particular, accessing the KV cache poses the most critical bottleneck
during the decoding stage of LLMs [41, 98, 99]. A straightforward
approach to minimize off-chip memory usage is to expand the
on-chip SRAM size, which decreases expensive off-chip memory
accesses and boosts system performance [15, 76]. To illustrate this,
we evaluate the latencies of two edge computational systems with
4MB and 8MB of SRAM executing the LLaMA2-7B models across
different sequence lengths. Tests are conducted on a simulated plat-
form with a 32 × 32 systolic array for 8-bit MAC operations, and
16GB DRAM with 64GB/s bandwidth, reflective of an edge tensor
processing unit (TPU) similar to the Google Coral edge device [72].
As shown in Figure 3 (a), doubling the SRAM size leads to an av-
erage of 1.27× speedup. However, expanding the SRAM capacity
from 4MB to 8MB in the evaluation platform increases the power
consumption and chip area by 29% and 26%, respectively. Given the
limited area and power budget for edge environment, increasing
SRAM size reduces the resource available for other critical com-
ponents, leading to a suboptimal system performance [14, 39, 79].
Therefore, we have the following observation:

Obs. 1: Larger on-chip memory alleviates the KV caching bottle-
neck in LLM, but brings area and power penalties in edge devices
using SRAM as the on-chip storage.

3

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianhua Xia and Sai Qian Zhang

0%

20%

40%

60%

80%

100%

120%

20°c60°c20°c60°c20°c60°c20°c60°c20°c60°c20°c60°c20°c60°c20°c60°c

TriviaQA Qasper TriviaQA Qasper TriviaQA Qasper TriviaQA Qasper

LLaMA2-7B LLaMA2-13B LLaMA2-70B Mistral-7B

Comp KV Cache

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01 1.0E+02 1.0E+03 1.0E+04R
e

te
n

tio
n

 F
a

ilu
re

 R
a

te

Refresh Interval (us)

1778us

784us

9120us

45us

Figure 4: 65nm eDRAM retention
failure distribution at 105◦𝐶 [38].

LLM

KV
cache

Compute
engine

Execution

2DRP AERP

Kelle Scheduler

Figure 5: Overview of
the Kelle accelerator.

3.2 Pros and Cons of Integrating eDRAM
To increase the on-chip memory size without increasing area, one
approach is to replace SRAM with eDRAM. eDRAM not only pro-
vides more than twice the capacity under the same area of SRAM,
but also consumes lower access and leakage energy according to
Table 1. As shown in Figure 3 (b), the evaluation system with 8MB
eDRAM takes less area than the system with 8MB SRAM, leading
to lower LLM serving latency within a smaller chip size. Extensive
research [5, 16, 84] and commercial products [22, 24, 28, 37, 80]
demonstrate the feasibility of integrating eDRAM as the primary
on-chip storage medium. However, its potential to benefit LLM
serving in edge devices has not been explored. Although eDRAM
offers several advantages, prior studies [76, 97] have shown that
refresh operations can become a significant bottleneck in overall
system energy consumption. Moreover, when eDRAM is used to
store data with longer lifespans, infrequent refreshes can elevate
the risk of readout errors, as illustrated in Figure 4. The retention
failure rates are represented as the percentage of bits with retention
errors, as the refresh interval varies. To illustrate this issue, we use
an 8MB eDRAM to replace the 4MB SRAM in the system described
in Section 3.1. The eDRAM refresh interval is set to 45𝜇𝑠 to ensure
no data corruption. We evaluate the energy consumption of the
eDRAM system across different models and sequence lengths. As
shown in Figure 3 (c), without optimization, eDRAM refresh opera-
tions take up to 46% of the total energy consumption, leading to
1.7× more energy consumption on average.

Obs. 2: Under the same chip area, eDRAM can bring latency
benefits over SRAM for LLM serving in edge devices. However, to
fully leverage its power advantages, eDRAM refresh operations
must be greatly minimized.

3.3 Kelle: Co-design KV Caching and eDRAM
To minimize eDRAM energy consumption, three effective strategies
are: reducing data refresh frequency, decreasing stored data size,
and decreasing data lifetime. To enable eDRAM for enhanced LLM
serving performance in edge devices, we propose Kelle, a hardware
and algorithm co-design solution for minimized eDRAM refresh
energy and efficient KV cache management.

3.3.1 eDRAM Refresh Control. Reducing data refresh frequency
may raise the risk of retention failures, causing data corruption.
This leads to a key question: To what extent can LLMs tolerate data

corruption in the KV cache without compromising accuracy? Led by
this question, we co-design the eDRAM memory layout and con-
troller with two-dimensional adaptive refresh policy (2DRP), which
sets fine-grained dynamic refresh intervals described in Section 4.2.

3.3.2 KV Cache Eviction. A smaller KV cache can significantly
reduce the data storage demands on eDRAM, resulting in lower
refresh energy consumption and improved system performance.
Previous studies have observed that evicting unimportant tokens
does not compromise the generation quality. However, to identify
the unimportant tokens, previous works either require profiling of
the sequences [27, 47], or extra computation [83, 98]. To manage
the KV cache efficiently, we propose a novel systolic evictor archi-
tecture to accelerate the operation of attention-based eviction and
recomputation policy (AERP), as described in Section 4.1.

3.3.3 KV Vector Recomputation. As the sequence length grows,
the benefit of KV caching diminishes at a certain threshold since
the time for accessing off-chip memory might outweigh that for
recomputing partial KV tensors. Recomputation aligns well with
the strength of eDRAM to store transient data, as shown in Sec-
tion 4.1. However, the balance between recomputation and storage
requires careful scheduling considering the hardware features. We
propose the Kelle Scheduler to reduce the KV vector data lifetime via
designing the computational pattern, which is depicted in Section 6.

4 Kelle Algorithm
In this section, we present the efficient algorithms used within the
Kelle framework, with an overview provided in Figure 5. During
execution, Kelle utilizes attention-based eviction and recomputa-
tion policy (AERP) and the two-dimensional adaptive refresh policy
(2DRP) to manage eDRAM operation, as described in Section 4.1
and Section 4.2.

4.1 Attention-based Eviction and
Recomputation Policy

We begin by discussing the eviction policy when the eDRAM ca-
pacity is reached during the decoding stage.

4.1.1 Eviction policy. For a KV cache with limited capacity, capable
of holding up to 𝑁 ′ tokens, during the decoding stage, the arrival of
the (N’+1)-th token requires the eviction of the KV vectors [𝑘ℎ𝑛 , 𝑣ℎ𝑛]
from one of the tokens 𝑛 (where 1 ≤ 𝑛 ≤ 𝑁 ′). The KV vectors of
the ℎ-th head and 𝑛-th token to be evicted are selected based on
their importance 𝑠ℎ𝑛 , which is computed by summing the attention
scores (Equation 1) with all other tokens in KV cache, shown as:

𝑠ℎ𝑛 =
∑︁

1≤𝑖≤𝑛
𝐴ℎ𝑛,𝑖 (3)

An example of the eviction process is illustrated in Figure 6. Assume
the KV cache has a budget to store a total of 𝑁 ′ = 4 vectors. We
consider a case with three attention heads. For clarity, we only
depict the computation for the first head and omit the head notation.
When [𝑘5, 𝑣5] arrives, the importance scores are first computed
using Equation 3, as shown in Figure 6 (a). The KV vectors of the
token with the smallest importance score (third token) are then
evicted, as depicted in Figure 6 (b). By leveraging the fact that the
computation of 𝑦𝑁 is unaffected by the relative order of the KV

4

Kelle: Co-design KV Caching and eDRAM for Efficient LLM Serving in Edge Computing MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

Saliency
DNN

Loss

(h,w,3)

(H
, W

, 3
)

SegFormer
Deeplab…

Sseg(.)

FSNet Architecture

Gaze
direction

Uniform
subsampling (h,w,1)

(h,w,3)

Scls(.)

S(.)

(h,w,1)
(h,w,1)

(H
, W

, 1
)

Original Image Foveated
Segmentation

Saliency
DNN

Segmentation
DNN

Classification
DNN

FSNet Training Strategy

(c)(b)(a)

Saliency
DNN

Segmentation
DNN

Classification
DNN

Step 1 Step 2

2
3
1
2

0

2
0

2 2
3
3

5

2
3
1
2

0

2
0

2 2
3
3

5

s5 k5 v5

(a) (b)

1
2
3
1
2

0

2
3

2 2
3
0

5
64

9 6957

su
m

s=

s1

s2

k5 v5

k1 v1

s5

k2 v2

s4

KV
cache

Importance
scores

x4

x4

k4 v4

WK WV

(c)

head 1

head 3
head 2

s1

s2

k3 v3

k1 v1

s3

k2 v2

s4

KV
cache

Importance
scores

x4

Figure 6: (a) Computation of the importance scores for each of
three heads. (b) The KV vectors of the token with the lowest
score is replaced with the new KV vectors. Input vector 𝑥4 is
stored because the fourth token is important among two out
of three heads. Storing 𝑥4 frees up an eDRAM entry, thereby
reducing the eDRAM refresh cost. (c) Recompute KV vectors
of the fourth token for saving eDRAM storage.

vectors, Equation 1 and Equation 2 can be computed by reading the
KV vectors from the cache in sequence, without concern for their
original token indices. It is important to note that the importance
score 𝑠ℎ𝑛 of the same token 𝑛 might vary across different attention
heads. As a result, the eviction pattern of KV vectors will differ
across these heads h.

For the pre-filling stage with a context token length of 𝑁𝑐𝑥𝑡 , all
the context tokens are processed in parallel. For each head within
each layer, importance scores of Nth token are calculated as 𝑠ℎ

𝑁
=∑

1≤𝑛≤𝑁𝑐𝑥𝑡 𝐴
ℎ
𝑛,𝑁

. The tokens with top 𝑁 ′ highest 𝑠ℎ𝑛 will be retained
in the KV cache for decoding operations.

In addition to the tokens with the highest 𝑠ℎ𝑛 scores, the initial
tokens and most recent tokens are also retained due to their proven
impact on model performance, as demonstrated by prior work [83,
98] and supported by our experiments.

4.1.2 Recomputation policy. As discussed in Section 2.3, eDRAM is
well-suited for storing transient data. Although the eviction policy
reduces the number of KV vectors that need to be retained during
model execution, storing KV vectors with long lifetime in eDRAM
still incurs a serious cost due to the required refresh operations. To
mitigate the refresh cost, we can further apply the recomputation
technique. Specifically, for a subset of tokens 𝑁𝑟𝑒𝑐𝑜𝑚𝑝 in the KV
cache, their KV vectors will be recomputed using the correspond-
ing input vector 𝑥𝑁 , which serve as inputs to𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 , as
depicted in Figure 1 (b). By leveraging recomputation, the storage
requirement can be reduced from maintaining two vectors (K and
V) to holding just a single vector (input x). This approach allows
for K and V to be recomputed as needed, effectively mitigating the
long data lifetime of KV vectors.

During decoding stage execution, the KV vectors 𝑘ℎ
𝑁

and 𝑣ℎ
𝑁

for all heads ℎ ∈ 𝐻 are first recomputed by multiplying the input
vector 𝑥𝑁 with𝑊𝐾 and𝑊𝑉 (Figure 6 (c)), which are then used for the
decoding process. To achieve savings in KV cache storage through
recomputation, the storage cost of the input vector 𝑥𝑁 , which is
1 ×𝐶 , must be smaller than that of the recomputed KV vectors. To
satisfy this, the KV vectors for a token 𝑁 are recomputed using
𝑥𝑁 if they would otherwise be retained in at least 𝜃 > 50% of the
heads without recomputation, where 𝜃 represents the popularity
of the token. This approach is justified because the storage cost

2

k5,[15:8]

3
1

k1,[15:8]

k4,[15:8]

k5,[7:0]

k1,[7:0]

k4,[7:0]

v5,[15:8]

v1,[15:8]

v4,[15:8]

v5,[7:0]

v4,[7:0]

v1,[7:0]

KV cacheRefresh frequency decreases with
layer depth and bit position

KV bit position

A
tte

nt
io

n
sc

or
e

Less
frequent
refresh

High
frequent
refresh

Importance
scores

(c)(b)

Store
input

vector xN

(a)

…

Yes Evict Is sN the
smallest?

sN
h

 Is token
N popular?

No

No

Yes

Store KV vectors kN ,vN hh

h

Figure 7: (a) Summary of AERP, only one head h is shown for
simplicity. (b) 2D-adaptive refresh policy. (c) As an example
on 2DRP. 𝑘5 [15 : 8] denotes the eights to fifteenth bits of
the key vector for the fifth token. Darker colors mean bits
refreshed more frequently, resulting in a lower retention
error rate.

1

10

100

1000

1.00E-05 1.00E-03 1.00E-01

PP
L

Uniform Error
Injection

P
5.00E-04 5.00E-02

MSB
LSB

5.00E-04 5.00E-02

HST
LST

(b) (c)(a)

P P

8↑

206↑

50↑

587↑

2.6↑

Figure 8: (a) PPLs with bit-flip error rates P. (b) LLM accuracy
under varying bit-flip error rates when applying the bit flip-
ping solely on (a) HST vs. LST and (b) MSB vs. LSB, where
𝑃 denotes the error rate. A lower PPL reflects better perfor-
mance, with the red numbers representing the gap between
the PPL values.

associated with the KV vectors, calculated as 2 × 𝐶
𝐻
× 𝜃𝐻 , would

exceed the size of 𝑥𝑁 (i.e., 𝐶). As shown in Figure 6 (b), the fourth
token is deemed popular in two of three heads, so the input vector
𝑥4 is retained, avoiding the storage of KV vectors.

In addition to storage savings, the recomputed KV vectors will
be transient, as they are only used for a short duration to compute
Equation 1, which further capitalizes on the advantages of eDRAM.
Moreover, the additional cost of recomputation will be minimal
due to the systolic array architecture for the computational engine,
discussed in Section 5.2.

For the pre-filling stage, the importance scores 𝑠ℎ𝑛 for each token
𝑛 in head ℎ are calculated first. Next, for each head ℎ, KV vectors
are evicted based on the importance scores of the corresponding
tokens. Among tokens with high importance scores, those whose
KV vectors are retained in at least 50% of the heads (i.e., popular
tokens) have their input vectors𝑥𝑛 stored; otherwise, the KV vectors
are stored. During decoding, each new token’s storage format is
dynamically determined by computing the popularity 𝜃 . Figure 7 (a)
summarizes the overall AERP scheme. Although token popularity
can vary during the decoding process, empirical evidence shows
limited fluctuation, namely tokens important to over 50% of heads
rarely decrease in importance. Therefore, in Kelle, once a token
is stored with its input vectors, its storage format remains fixed
throughout decoding unless it gets evicted.

4.2 Two-Dimensional Adaptive Refresh Policy
To explore the tolerance of LLMs to data corruption in the KV cache
without compromising accuracy, we simulate retention failures by

5

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianhua Xia and Sai Qian Zhang

introducing bit flip errors across the eDRAM memory cells. Specifi-
cally, we assess the impact on the perplexity (PPL) of LLaMA2-7B
models using the Wikitext-2 [52] dataset. Lower PPL indicates bet-
ter performance. During execution, the bit flip errors are introduced
in the KV cache with a uniform probability. The results, presented
in Figure 8 (a), reveal that for error rates below 10−3, the increase
in PPL remains minimal, staying under 0.1. However, as the bit flip
error continues to rise, PPL increases significantly. This suggests
that LLMs can tolerate a certain degree of KV cache errors. A natu-
ral follow-up question arises: Is it possible to develop a finer-grained
refresh policy that could support even lower refresh frequencies while
maintaining accuracy?

In Section 4.1, tokens are evicted based on their importance
scores, as defined in Equation 3. We hypothesize that a similar
approach could be applied to the eDRAM refresh policy, assigning
lower refresh frequencies to KV vectors or input vectors of less
important tokens and higher frequency to those of more important
tokens. To test this hypothesis, we implement an adaptive refresh
policy and repeated the experiment. Tokens were divided into two
groups based on their importance scores, referred to as the high
score token (HST) group and the low score token (LST) group for
simplicity. A probability 𝑝 of bit retention failure (bit flip error)
in the KV vectors was applied separately to the KV vectors of
the corresponding tokens in HST and LST groups. The results in
Figure 8 (b) show that LLM performance degrades more when
bit retention failures affect the HST group than the LST group,
indicating that tokens in the HST group require higher refresh
frequency, thus supporting our hypothesis.

Additionally, it is reasonable to hypothesize that the less signifi-
cant bits (LSBs) are less vulnerable to retention failure errors than
the more significant bits (MSBs), as bit flip error on LSBs causes
smaller changes in value. For each value in a KV vector, we intro-
duce bit retention errors to either the MSBs (bits 15-8) or the LSBs
(bits 7-0). The results, shown in Figure 8 (c), reveal that the MSBs
are more sensitive to retention errors than the LSBs under the same
bit flip error rate, further supporting our hypothesis.

Based on observations above, we propose an adaptive refresh
control strategy called the two-dimensional adaptive refresh policy
(2DRP), as shown in Figure 7 (b). This strategy adjusts the refresh
frequency of each eDRAM cell based on both the bit position within
each value in KV vectors or input vectors and the importance score
of each token. An example of 2DRP is shown in Figure 7 (c), where
the KV cache holds up to 𝑁 ′ = 3 tokens. The refresh frequency
increases with both the token importance and the significance of
bit positions. During execution, the importance scores of KV and
input vectors are dynamically calculated, and a refresh frequency
is assigned accordingly based on these scores and bit positions.

5 Kelle Edge Accelerator
Figure 9 provides an overview of the Kelle accelerator. It incorpo-
rates a hybrid eDRAM-SRAM memory subsystem, a reconfigurable
systolic array (RSA), and specialized function units (SFUs). The
weights are quantized to 8 bits, and activations and KV vectors
are maintained in 16 bits, with weights stored in SRAM, while
activations and the KV vectors are held in eDRAM. During oper-
ation, systolic evictor accumulates attention scores and eDRAM

eDRAM

Reconfigurable
Systolic Array

DRAM Controller, DRAM PHY

SFU

DRAM

PE PE PE

PE PE PE

PE PE PE

…

…

……

Sy
st

ol
ic

 E
vi

ct
or

A
cc
um

ul
at
or

…

Normalization

Softmax

ActFN

Embedding

ControllerSRAM

……

Figure 9: An overview of Kelle hardware accelerator.

controller handles KV vector eviction and recomputation while dy-
namically adjusting the refresh frequency, as discussed in Sections
4.1 and 4.2. Each processing element (PE) in RSA performs 8-bit
multiply-accumulate (MAC) operations.

SFU handles non-linear operations, including activation func-
tions, softmax, normalization, and positional embeddings. As prior
research has shown [20, 62, 78, 81], the energy consumption of non-
linear operations increases with input sequence length. Among
these operations, softmax consumes significant resources. We em-
ploy online max calculation from Softermax [71] to minimize mem-
ory access. For other non-linear operations, we follow the computa-
tion flow and use lookup tables (LUTs) to perform the calculation.

5.1 Memory Subsystem
Figure 10 illustrates the memory subsystem of the Kelle accelerator.
In this design, a 2MB SRAM stores the weights, while activations
and KV vectors are held in a 256KB activation eDRAM and 4MB KV
cache eDRAM, respectively. Kelle accelerator implements 2DRP by
dividing KV vectors into four groups based on importance scores
and bit positions and applies the refresh frequency accordingly.
Specifically, the MSBs (bits 15-8) of the KV vectors for tokens in the
HST group are refreshed at the highest, while LSBs (bits 7-0) of the
KV vectors for tokens in the LST group are refreshed at the lowest
frequency. To support the AERP, for certain tokens, input vectors
are stored in the KV cache eDRAM instead of KV vectors. These
input vectors are then divided into four groups and controlled in
the same manner as KV vectors, organized by importance scores
and bitwidth. For simplicity, we use KV vectors to describe the
memory subsystem design, without referencing input vectors.

To execute 2DRP during LLM inference, each element of the KV
vectors is split bitwise and stored across different eDRAM banks.
Specifically, for KV vectors, the MSBs and LSBs are stored in sep-
arate KV cache eDRAM banks, referred to as MSB banks and LSB
banks, highlighted by the darker and lighter colors in Figure 10.
The importance score of each token is computed dynamically using
Equation 3 under 4-bit precision and stored in a register file, with
each entry corresponding to a KV vector spanning four banks. KV
vectors corresponding to the same token share the same address
across different eDRAM banks. The system features a single evic-
tion controller that manages AERP across all four banks, along with
two refresh controllers responsible for executing 2DRP separately
over MSB and LSB banks, respectively.

6

Kelle: Co-design KV Caching and eDRAM for Efficient LLM Serving in Edge Computing MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

0x1
0x0

 1
0x2

 0

 0
 0
 10x3

Key MSB
128 bits

Attn score
4 bits

0x1
0x0

0x2
0x3

Value MSB
128 bits

0x1
0x0

0x2
0x3

Key LSB
128 bits

0x1
0x0

0x2
0x3

Value LSB
128 bits

0x1
0x0

0x2
 1 0 1 00x3
 0 0 1 0
 1 0 1 0
 0 1 0 1

D
R

A
M

Weight
SRAM

Activation
eDRAM

KV cache eDRAM

… …
… …
… …
… …

… …
… …
… …
… …

… …
… …
… …
… …

 1
 0

 0
 1

1

 0
 0
 1

…
……
…

…
…… 1

 0
 1 … 1

 0

 0
 1

1

 0
 0
 1 1

 0

 0
 1

1

 0
 0
 1

Controller

Eviction Controller

RSA

Systolic Evictor
BankBank

Refresh Controller Refresh Controller

PE Array
Reg File

Figure 10: Kelle memory subsystem. Input vectors of certain
tokens are stored in the KV cache, represented by red rows.

In each MSB and LSB bank, the tokens are further divided into
two groups according to their attention scores, with a counter in
the refresh controller monitoring each group’s refresh interval.
The controller iterates through the eDRAM entries, identifying the
group of each token by reading its attention score from the register
file. When the refresh interval for a specific group expires, the
controller triggers a refresh signal. The corresponding KV vector
addresses for the tokens in that group are then computed, and the
KV vectors are read out and written back as part of the refresh
procedure. The refresh operation is triggered when the KV vectors
are not used by the model, so the refresh latency can be hidden.
When the KV cache reaches capacity and a new token arrives, the
eviction controller receives the evict token index from the systolic
evictor and replaces that token with the new token.

To fully utilize the 32 × 32 RSA by feeding data in parallel and
avoiding bank conflicts, the Kelle KV cache is divided into 32 banks.
Specifically, 8 banks are assigned to each of the Key MSB, Key LSB,
Value MSB, and Value LSB groups. With this design and pipelined
cache read, Kelle eDRAM provides sufficient bandwidth to make full
use of the RSA without bank conflicts. Additionally, other eDRAM
access operations such as token read and token eviction operate
independently, this effectively mitigates bank conflicts.

During the LLM execution, the RSA I/O controller efficiently
reconstructs the data from different banks for computation with
minimal overhead. Additionally, the Kelle accelerator stores the KV
vectors from a subset of LLM layers in eDRAM, with the number of
layers determined by the specific LLM size and text length. eDRAM
greatly minimizes off-chip memory access overhead.

5.2 Reconfigurable Systolic Array
The systolic array core consists of a 32 × 32 two-dimensional array
that processes inputs in a staggered manner, sending the computed
partial sums to the accumulator and SFUs. It utilizes a weight-
stationary data flow, as shown in Figure 11 (a). We employ a recon-
figurable strategy similar to that in FAST [96] to perform in-place
transposed matrix multiplication.

Importantly, the recomputation in Section 4.1 introducesminimal
overhead in the LLM decoding stage. Leveraging the strength of
systolic arrays for matrix operations, the recomputed token vectors

PE PE PE

PE PE PE

…
>

>RSA

x5

RSA

x5
x4

output

Input

output

Input

(a)

(b)

(c)

RSA Systolic Evictor
-inf

…

Systolic Array Row i

Systolic Array Row i+1

1

3

Si

Si+1

Mi

Mi+1

min

…

(d)
Systolic Evictor Row i+1

Systolic Evictor Row i
2

4

Figure 11: (a) and (b) show the impact of recomputation on
RSA operation. (c) The integration of RSA and systolic evictor.
(d) The execution order of systolic array and systolic evictor.
Numbers in red circles denote the orders.

can be combined with the current token’s input vector to create an
input matrix efficiently. Using the same notation as the example in
Figure 6 (b), Figure 11 (a) shows the input vector 𝑥5 of the current
token being sent to RSA for KV vector computation. To recompute
KV vectors for the fourth token, 𝑥4 and 𝑥5 can be combined into a
matrix, causing minimal latency and energy growth in Figure 11(b).

5.3 Systolic Evictor
The token eviction process in the AERP algorithm includes com-
puting the attention score as described in Equation 1, updating the
importance score based on Equation 3, identifying the token with
the lowest importance score, and performing the KV cache update.

To efficiently implement the eviction algorithm, we propose a
systolic evictor (SE) which operates in a systolic style and is in-
tegrated with the RSA to search the minimum importance score
on-the-fly. The importance score is calculated by summing the𝑄𝐾𝑇
results in Equation 1 without passing through the softmax. This
integration ensures the token with the minimum importance score
is found as soon as the new token’s attention score is calculated
from the RSA. After finding the index of the token with minimum
importance score, the SE sends the index to the eviction controller
in the eDRAM controller to evict the corresponding token. Figure 11
(c) illustrates the design of SE and its integration in the RSA. The
SE comprises a column of registers, denoted as S in Figure 11 (c),
to preload the importance scores of previous tokens, and a reg-
ister chain, denoted as M, periodically propagates the minimum
importance score (min) from top to bottom. Figure 11 (d) illustrates
execution order of the RSA and SE. In one cycle, the attention score
is calculated from the 𝑖-th row of RSA, and then the 𝑖-th row of
SE updates the importance score and the minimum importance
score index, marked as Step 1 and Step 2, respectively. In the next
cycle, the same operations are executed in the next row of RSA and
SE, marked as Step 3 and Step 4, respectively. The systolic evictor
avoids the extra LLM execution latency from the minimum search.

6 Kelle Scheduler
To further minimize eDRAM refresh energy, we introduce a novel
computation pattern that shortens data lifetime and accelerates
LLM inference, all without compromising accuracy.

7

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianhua Xia and Sai Qian Zhang

MMKMMQ

Load WQ Load WK Load WV Load K Load V
LX

Time

Baseline

MMV MMqk SM MMKMMQ

Load WQ Load WK Load WV

Load K

MMVMMqk

Load V

SM

Kelle

Time

(b)(a)

TMM

Tsoftmax

TSRAM

TeDRAM

Idle

LQ

LK
Lv

LX

LQ

t0 t1 t2 t3 t4 t5 t0’ t1’ t2’ t3’

Figure 12: (a) and (b) show the computation patterns and eDRAM data lifetime of the SA block in baseline and Kelle scheduler.
SM denotes softmax operation.

To begin, we perform a numerical analysis of the data lifetime
associated with the self-attention (SA) architecture in the LLM de-
coding phase. As illustrated in Section 2.1, the computation in SA
firstly involves matrix multiplication between the input 𝑋 with
weight matrices𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 producing the output𝑄,𝐾 and𝑉 .
The processes are denoted as𝑀𝑀𝑄 ,𝑀𝑀𝐾 , and𝑀𝑀𝑉 , respectively.
Subsequently, 𝑄 and 𝐾 undergo multiplication, followed by a soft-
max operation to compute the attention score𝐴, which are referred
to as𝑀𝑀𝑞𝑘 and 𝑆𝑀 , respectively. Ultimately, 𝐴 is multiplied by the
weight matrix𝑊𝑂 to produce the SA output, labeled as𝑀𝑀𝑂 . The
latency (𝑇𝑀𝑀) of matrix multiplications is estimated as follows:

𝑇𝑀𝑀 =
𝑁𝑀𝑀

𝑇𝑂𝑃𝑅𝑆𝐴
(4)

where 𝑁𝑀𝑀 represents the number of MAC operations required
by the matrix multiplication. 𝑇𝑂𝑃𝑅𝑆𝐴 denotes the throughput of
the RSA, as described in Section 5.2. The latency associated with
eDRAM access operations for KV vectors, represented as 𝑇𝑒𝐷𝑅𝐴𝑀 ,
is modeled as follows:

𝑇𝑒𝐷𝑅𝐴𝑀 =
𝑆𝐾𝑉

𝐵𝑒𝐷𝑅𝐴𝑀
(5)

where 𝑆𝐾𝑉 denotes the size of the KV vectors in bytes. 𝐵𝑒𝐷𝑅𝐴𝑀
denotes the bandwidth of the eDRAM. Similarly, the latency associ-
ated with the weight SRAM access operations, denoted as 𝑇𝑆𝑅𝐴𝑀 ,
is modeled as follows:

𝑇𝑆𝑅𝐴𝑀 =
𝑆𝑊

𝐵𝑆𝑅𝐴𝑀
(6)

where 𝑆𝑊 denotes the size of weights in bytes. 𝐵𝑆𝑅𝐴𝑀 denotes the
bandwidth of SRAM. Figures 12 (a) show a baseline computation
pattern, where the matrix multiplication operations 𝑀𝑀𝑄 , 𝑀𝑀𝐾 ,
𝑀𝑀𝑉 , and𝑀𝑀𝑞𝑘 are conducted one after another, which prolongs
the data lifetime for the inputs 𝑋 , 𝑄 , 𝐾 , and 𝑉 . Data lifetime is
defined as the interval from when data is computed to when it is
utilized by a subsequent operation. For instance, in Figures 12 (a),
the computation of vector 𝑄 starts at 𝑡1 after the weight matrix
𝑊𝑄 is accessed from SRAM, and 𝑄 is consumed at 𝑡4 when the
multiplication of𝑄 and 𝐾 starts. Between 𝑡1 and 𝑡4,𝑊𝐾 and𝑊𝑉 are
loaded from SRAM and 𝐾 is accessed from eDRAM KV cache. The
latencies of accessing𝑊𝐾 and𝑊𝑉 are both 𝑇𝑆𝑅𝐴𝑀 and the latency
of accessing 𝐾 is 𝑇𝑒𝐷𝑅𝐴𝑀 . So the data lifetime of 𝑄 is 2 ×𝑇𝑆𝑅𝐴𝑀 +
𝑇𝑒𝐷𝑅𝐴𝑀 . The total data lifetime of all the activations is the sum of
the data lifetime of each activation because they are all stored in
eDRAM and require refreshing. We omit the computation time𝑇𝑀𝑀
from Equation 4 due to its negligible magnitude relative to 𝑇𝑆𝑅𝐴𝑀
and 𝑇𝑒𝐷𝑅𝐴𝑀 . This extended data lifetime leads to a higher refresh
cost for eDRAM. The total data lifetime 𝐿𝑏𝑙 of the transient data in

baseline schedule is modeled as follows:
𝐿𝑋 = 3 × 𝑇𝑆𝑅𝐴𝑀 , 𝐿𝑄 = 2 × 𝑇𝑆𝑅𝐴𝑀 +𝑇𝑒𝐷𝑅𝐴𝑀
𝐿𝐾 =𝑇𝑆𝑅𝐴𝑀 +𝑇𝑒𝐷𝑅𝐴𝑀 , 𝐿𝑉 = 2𝑇𝑒𝐷𝑅𝐴𝑀
𝐿𝑏𝑙 = 𝐿𝑋 + 𝐿𝑄 + 𝐿𝐾 + 𝐿𝑉 = 6𝑇𝑆𝑅𝐴𝑀 + 4𝑇𝑒𝐷𝑅𝐴𝑀

(7)

where 𝐿𝑋 , 𝐿𝑄 , 𝐿𝐾 and 𝐿𝑉 denotes the data lifetime of 𝑋 , 𝑄 , 𝐾
and 𝑉 , respectively. 𝑇𝑆𝑅𝐴𝑀 and 𝑇𝑒𝐷𝑅𝐴𝑀 are defined in Equation 6
and Equation 5. In contrast, the computation pattern used by the
Kelle is illustrated in Figures 12 (b). Thanks to the integration of
separate on-chip memory, the memory access for weights and KV
vectors is parallelized. This arrangement reduces the data lifetime
of activations, which can be estimated as follows:

𝐿𝑋 = 3 × 𝑇𝑆𝑅𝐴𝑀 , 𝐿𝑄 =𝑇𝑆𝑅𝐴𝑀 +𝑇𝑒𝐷𝑅𝐴𝑀
𝐿𝐾𝑒𝑙𝑙𝑒 = 𝐿𝑋 + 𝐿𝑄 = 4𝑇𝑆𝑅𝐴𝑀 +𝑇𝑒𝐷𝑅𝐴𝑀

(8)

The key and value vectors are used immediately for their respective
computations, eliminating the need for long-term storage; therefore,
their data lifetimes can be considered negligible. Compared to the
baseline scheme, the Kelle scheduler significantly reduces the data
lifetime of transient data in eDRAM, resulting in decreased refresh
energy consumption and enhanced system performance.

7 Accuracy Evaluation
7.1 Main Accuracy Result
Kelle is evaluated on various LLMs, including Llama2 [75], Llama3 [21],
Llama3.2 [21], Mistral [35], QWEN [87], and OPT [95] with vary-
ing model sizes. We evaluate Kelle on the language generation
tasks by perplexity of WikiText-2 (WK2) [52], and PG19 [66]. WK2
sequences range from hundreds to thousands of tokens. PG19 se-
quences range from tens of thousands to millions. We evaluate
the PG19 text generation task using the Cold Compress frame-
work [4, 61] by providing the model a book title and a short de-
scription and setting the sequence generation length to 8192. Kelle
is also evaluated over different zero-shot tasks, including PIQA
(PQ) [10], Lambada (LA) [64], Arc Easy (A-e) [18], Arc Challenge
(A-c) [18], TriviaQA (TQ) [36], and Qasper (QP) [19]. We use the
LM Evaluation Harness [26] with default parameters.

For KV vector eviction, the number of tokens retained in the
KV cache is dynamically adjusted based on the dataset during both
pre-filling and decoding phases. To simulate bit flip error from low
eDRAM refresh frequency, bit-level retention failure is introduced
with a predefined probability based on the refresh interval. We set
the refresh interval as 0.36ms, 5.4ms, 1.44ms, and 7.2ms for the
MSBs (bits 15-8) of HST, LSBs (bits 7-0) of HST, MSBs of LST, LSBs
of LST, respectively, with an average retention time of 1.05ms. This
achieves an averaged retention failure rate at 2e-3.

8

Kelle: Co-design KV Caching and eDRAM for Efficient LLM Serving in Edge Computing MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

Table 2: Accuracy performance of each method. FP16 denotes the LLM accuracy under FP16 without KV cache reduction.

Model LLaMA2-7B LLaMA2-13B LLaMA3.2-3B LLaMA3-8B Mistral-7B QWEN2-7B OPT-6.7B
Method FP16 SL H2O QR Kelle FP16 SL H2O QR Kelle FP16 SL H2O Kelle FP16 Kelle FP16 Kelle FP16 H2O Kelle FP16 H2O Kelle
WK2 (↓) 5.47 6.89 5.70 5.73 5.74 4.88 6.21 5.44 5.83 5.62 6.32 7.93 6.57 6.65 6.14 6.59 5.25 5.86 5.32 6.11 6.23 12.3 13.8 14.6
PG19 (↓) 10.51 NA 12.34 11.77 12.59 8.75 NA 9.84 9.15 9.80 8.95 NA 9.84 9.66 11.82 12.97 10.42 13.30 9.3 11.2 11.4 17.4 20.1 19.8
A-c (↑) 46.33 38.40 46.10 45.80 45.93 49.06 46.08 48.35 47.59 48.83 50.34 46.59 50.08 50.03 53.16 51.89 55.03 54.98 57.6 56.1 55.8 45.2 44.1 44.8
A-e (↑) 74.62 52.99 73.02 72.89 72.78 77.48 58.25 76.71 76.45 76.33 76.98 70.45 76.31 76.45 77.69 75.81 80.22 78.90 70.5 67.8 68.2 60.1 58.8 58.6
PQ (↑) 79.11 75.14 78.05 77.42 77.35 80.52 78.92 79.05 78.78 78.92 79.7 75.78 79.43 78.64 80.52 77.62 82.15 80.81 80.9 78.4 78.5 76.4 75.2 74.9
LA (↑) 73.90 NA NA 72.39 72.81 76.75 NA NA 75.67 75.98 73.58 NA NA 71.26 75.72 73.38 75.49 75.54 68.4 NA 67.1 61.5 NA 59.2
TQ (↑) 48.95 NA 47.53 47.56 47.40 58.73 NA 57.46 56.86 57.55 59.84 NA 58.62 58.70 61.53 58.79 61.57 59.96 63.5 61.1 60.7 43.2 40.3 40.6
QP (↑) 12.69 NA 12.31 12.06 12.18 13.07 NA 11.75 11.63 11.86 12.52 NA 10.87 11.01 13.84 11.88 13.18 11.67 21.3 19.4 19.5 9.3 7.8 7.5

Table 3: LLaMA2-7B accuracies over different cache sizes.

𝑁 ′ Full 512 256 128 64 32 16
A-c (↑) 46.02 46.02 45.92 45.93 44.63 44.20 38.52
A-e (↑) 73.05 73.04 73.05 72.78 72.38 70.42 67.27
PQ (↑) 78.75 78.49 77.61 77.35 75.31 74.14 71.63

Table 4: LLaMA2-7B accuracies of different refresh intervals.

Uniform (𝜇𝑠) 540 1050 2062
HST (𝜇𝑠) 180, 3600 360, 5400 720, 9000
LST (𝜇𝑠) 720, 5400 1440, 7200 2880, 10800
Accuracy Uniform 2DRP Uniform 2DRP Uniform 2DRP
A-c (↑) 45.31 46.26 44.19 45.93 38.52 39.78
A-e (↑) 72.85 73.12 70.29 72.78 66.50 67.05
PQ (↑) 76.83 77.44 76.43 77.35 74.97 75.21

We compare the accuracy performance of the Kelle algorithm
with a state-of-the-art quantization framework, QuaRot (QR) [6].
Additionally, we include StreamLLM [83] and H2O [98], two recent
KV cache eviction techniques, for comparison. The model weights
are quantized with 8-bit across all the approaches. To keep the
same KV cache budget between quantization and KV cache eviction
baselines, we configure QuaRot to quantize the KV vectors to 4-bit,
while StreamLLM, H2O, and Kelle are left unquantized as 16-bit.
For Kelle, we maintain a token storage budget of N’=128 for the PQ,
LA, A-e and A-c, N’=512 for WK2, N’=1024 for the TQ and QP, and
N’=2048 for PG19. Within the token budget, the most recent token
window size is configured as 64 for PQ, LA, A-e, and A-c; 256 for
WK2; 512 for TQ and QP; and 1024 for PG-19. 10 initial tokens are
also preserved across the datasets. StreamLLM and H2O are set to
have the same token storage budget as Kelle. We also compare with
the original FP16 models without KV cache eviction, denoted as
FP16. As shown in Table 2, Kelle maintains a comparable accuracies
as the original full KV cache model and outperforms or achieves a
comparable performance as the rest methods, showing the superior
accuracy performance of AERP and 2DRP algorithms.

7.2 Ablation Study
We adjust the budget size 𝑁 ′ for the Llama2-7B model and examine
its impact across various tasks. All other settings (e.g., quantization
bitwidth, retention failure rate) for Kelle remain the same. From
Table 3, we observe a consistent decline in accuracy as the budget𝑁 ′

decreases, but still achieves reasonable performance for 𝑁 ′ ≥ 128,
comparing with the KV cache without pruning (Full in Table 3).

Next, we examine the impact of 2DRP on LLM accuracy. Specifi-
cally, we compare 2DRP with a condition where all eDRAM cells

Table 5: Kelle Qualitative Met-
rics

Model Method CNN Truth BBQ
LLaMA2 FP16 40.58 34.28 95.21

7B Kelle 38.54 33.26 93.75
Mistral FP16 36.13 36.31 96.11
7B Kelle 34.61 34.89 94.83

Table 6: Accuracy of Kelle
with Quantization

Method Kelle W8A16 Kelle W4A8
WK2 (↓) 5.74 6.51
AC (↑) 45.93 44.89
AE (↑) 72.78 69.96
PQ (↑) 77.35 76.70

share the same refresh interval, while maintaining the same average
retention failure rate as 2DRP. All other conditions remain the same
for Kelle. In Table 4, we present the accuracy change with varying
refresh intervals on different tasks for the Llama2-7B model. In
Table 4, Uniform (𝜇s) denotes the uniform refresh interval applied
to eDRAM. The two numbers in the HST row represent the refresh
intervals for the MSBs and LSBs of HSTs, same for the LST row.
We observe that 2DRP improves accuracy compared to the uniform
eDRAM refresh across all the conditions and datasets.

Since edge deployment often involves human-facing applica-
tions, it is important to evaluate the impact of the approximations
in memory behavior introduced by 2DRP on text generation quali-
tative metrics. To evaluate coherence, we run Kelle on the LLaMA2-
7B and Mistral-7B models using the CNN/DailyMail [53] (CNN)
summarization dataset and report the ROUGE-1 scores. To evaluate
factual correctness, we test Kelle on the TruthfulQA benchmark [43]
(Truth) and report the multiple-choice, single-answer accuracy. To
assess bias tendencies, we use the BBQ benchmark [58] and report
the corresponding bias evaluation scores for both models. The re-
sults in Table 5 show that Kelle achieves performance comparable
to the FP16 model across all criteria.

Finally, we quantize the Llama2-7B model using the Quarot
framework [6] which adopts Hadamard Transformation to enable
low bit LLM quantization. We quantize the model weights to 4-bit,
KV vectors, and activations to 8-bit. With quantization, Kelle’s sys-
tem performance is expected to improve further, while the impact
on accuracy remains minimal, as shown in Table 6. This demon-
strates Kelle’s compatibility with model quantization techniques.

8 Hardware Evaluation
In this section, we report the hardware evaluation results of Kelle
edge accelerator described in Section 5. The Kelle edge accelerator
consists of a 2D 32 × 32 RSA, an SFU, essential interfaces, and a
memory controller, all implemented in RTL using SystemVerilog,
with frequency set to 1GHz. We report the area and power of Kelle
accelerator by synthesizing the components using 45nm NanGate
Open Cell Library [1] with Synopsys Design Compiler [9]. The size
of SRAM for weight storage is set to 2MB. The size of eDRAM for KV

9

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianhua Xia and Sai Qian Zhang

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10.64

0.58

0.54

0.53

0.75

0.60

0.55

0.54

0.80

0.64

0.57

0.56

0.72

0.58

0.54

0.53

0.75

0.60

0.55

0.54

1.46

2.37

3.19

3.44

1.35

2.12

2.91

3.16

1.24

1.83

2.51

2.76

1.44

2.33

3.15

3.40

1.36

2.13

2.92

3.17

1.55

2.85

4.40

4.94

1.42

2.47

3.82

4.33

1.28

2.03

3.10

3.53

1.52

2.79

4.30

4.84

1.42

2.49

3.84

4.36

1.93

3.91

6.83

8.07

1.75

3.28

5.64

6.67

1.57

2.62

4.30

5.06

1.89

3.79

6.61

7.81

1.76

3.31

5.70

6.74

0

2

4

6

E
ne

rg
y

E
ffi

ci
en

cy

Original+SRAM

Original+eDRAM

AEP+SRAM

AERP+SRAM

Kelle+eDRAM

1.84

2.55 2.81

2.32

1.44

12%

30%57%

RSA

KV

SRAM

15%

24%61%

RSA

KV

SRAM

17%

17%66%

RSA

KV

SRAM

16%

28%56%

RSA

KV

SRAM

13%

25%62%

RSA

KV

SRAM

Energy Breakdown

3.55

5.99
7.01

1.63

2.99

4.94

5.77

1.46

2.39

3.74
4.33

1.75

3.42

5.70 6.63

1.63

3.04

5.07

5.96

Speedup

1.79
2.36

3.20
3.47

2.12

2.93
3.19 3.17

3.44

1.34
2.12

2.93
3.19

1.42

Energy Breakdown Energy Breakdown Energy Breakdown Energy Breakdown

Figure 13: Comparison between Kelle and baseline systems. The performance are evaluated in terms of normalized energy
efficiency and speedup. The pie charts show the on-chip energy breakdown of major components within Kelle+eDRAM. The
dotted red lines depict the speedup of the corresponding settings.

1 1 1 1 1 1 1 11.
6

6

1.
6

7

1.
6

8

1.
6

9

1.
6

7

1.
6

9

1.
6

9

1.
6

9

1.
8

7

1.
8

8

1.
8

9

1.
8

9

1.
8

8

1.
8

9

1.
8

9

1.
9

0

2.
1

2

2.
8

5 4.
0

8

4.
4

8

1.
5

4

2.
5

3 3.
6

6

4.
0

5

2.
3

0 3.
9

5 6.
7

2

7.
6

1

1.
9

7

3.
2

1 5.
7

5

6.
6

3
0

2

4

6

E
n

er
g

y
E

ffi
ci

en
cy

Jetson LLM.npu DynaX COMET KelleSpeedup

1.
5

9

2.
2

5

1.
6

4

3.
8

9

1.
6

6

6.
6

3

1.
6

7
7.

5
2

1.
5

8

1.
9

6

1.
6

3 3.
1

5

1.
6

6

5.
6

5

1.
6

7
6.

5
4

Figure 14: Comparison between LLM accelerators

cache and activation storage is set to 4MB and 256KB respectively.
SRAM and eDRAM bandwidths are set to 128GB/s and 256 GB/s,
respectively. We utilize Destiny [60] to evaluate the area, power,
and timing performance of the eDRAM and SRAM with 65nm tech
node at 105◦𝐶 . The eDRAM retention time distribution aligns with
the data shown in Figure 4 [38, 97]. Notably, eDRAM operating
at temperatures below 105◦𝐶 exhibits an even longer retention
time, further enhancing system performance. We utilize Cacti 7
[8] to simulate the performance of a 16GB LPDDR4 DRAM, with
64GB/s bandwidth, similar to the DRAM in the Google Coral edge
device [72]. With these settings, the total on-chip area is 9.5𝑚𝑚2

and the area breakdown of RSA, eDRAM, SRAM, SFU are 23%, 33%,
37%, 7%, respectively. The DRAM takes an area of 16𝑚𝑚2. The on-
chip power is 6.52W and the power breakdown of RSA, eDRAM,
SRAM, SFU are 17%, 29%, 41%, 13%, respectively. The DRAM power
is 11.74W. Kelle accelerator achieves 4.13 INT8 TOPs. The Kelle
scheduler described in Section 6 further reduces the eDRAM cost.

We assess the hardware performance of the Kelle accelerator
across various LLM architectures over multiples tasks including
Lambada (LA) [64], TriviaQA (TQ) [36], Qasper (QA) [19], and
PG19 [66], with the context length set to 128, 512, 1024, and 512,
and the decoding length set to 512, 2048, 5120, and 8192, respectively.
The batch size is set to 16. The off-chip DRAM access latency and
energy are included in all evaluation results.

8.1 End-to-End Performance Evaluation
8.1.1 Evaluation Baseline. To understand the separate contribu-
tions of the Kelle algorithm and eDRAM-based accelerator dis-
cussed in Section 5, we compare the Kelle algorithm paired with
an eDRAM-based Kelle accelerator, referred to as Kelle+eDRAM,
against four baseline solutions.

The first baseline, Original+SRAM, runs the original LLM on
a system using SRAM as the primary on-chip storage. The model

weights are quantized to 8 bits, activations and KV vectors remain
16 bits and processed using Kelle RSA configured for 8-bit MAC
operations. The KV cache remains intact, with no AERP applied.
The SRAM-based system is configured to match the total on-chip
area of Kelle+eDRAM. We adjust the SRAM and systolic size to
achieve balanced compute/memory IO ratio, resulting in a systolic
array with 24×24 8-bit PEs, 4MB of on-chip SRAM, 16GB of off-chip
DRAM. The second baseline, Original+eDRAM, involves running
the original LLM on an eDRAM-based Kelle accelerator while keep-
ing the KV cache intact. The models are processed using Kelle RSA
configured for 8-bit MAC operations. This baseline removes all
algorithmic innovations and evaluates only the performance of the
eDRAM-based system. In the third baseline,AEP+SRAM, we apply
the attention-based eviction techniques with the settings described
in Section 7.1 for KV cache pruning, implemented on the same
SRAM-based system of Original+SRAM. The goal is to evaluate the
impact of the cache eviction algorithm on the SRAM-based system.
Note that this baseline does not involve any recomputation. The
fourth baseline, AERP+SRAM, runs the AERP algorithm on the
SRAM-based Kelle accelerator.

8.1.2 End-to-End Performance Improvement. Figure 13 compares
the above baseline solutions in terms of energy efficiency and
processing latency on multiple LLM and datasets. On average,
Kelle+eDRAM achieves a 3.94× and 4.46× improvement in latency
and energy efficiency compared to the Original+SRAM, and perfor-
mance gap gets larger as the decoding sequence gets longer. The
superior performance of Kelle stems from the algorithmic inno-
vations of AERP and 2DRP, combined with hardware advantages
such as the efficient eDRAMmemory controller, the systolic evictor
design, and the proposed Kelle scheduler.

8.1.3 Individual Contribution on the Performance Improvement. In
this section, we investigate the individual impact of Kelle optimiza-
tion techniques. First, on average, compared to Original+SRAM,
Original+eDRAM improves the speedup by 32% but degrades the
energy efficiency by 39%. The increased energy consumption is
attributed to eDRAM refresh operations without algorithmic or
hardware-level optimizations. The eDRAM enhances speedup due
to its larger capacity and faster access speeds compared to SRAM.
Second, the attention-based eviction policy accelerated by the sys-
tolic evictor reduces the latency by 2.39× and improves the energy
efficiency by 2.41×, when comparing the AEP+SRAM system with

10

Kelle: Co-design KV Caching and eDRAM for Efficient LLM Serving in Edge Computing MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

Table 7: Energy efficiency over multiple KV cache budgets.

N’ in PG19 2048 3500 5250 7000 8750
LLaMA3.2-3B 8.07× 6.89× 5.77× 5.13× 4.55×
LLaMA2-13B 5.06× 4.62× 4.02× 3.46× 3.11×

the Original+SRAM system. Next, thanks to the attention-based
recomputation policy, AERP+SRAM system improves the speedup
and energy efficiency by 1.19× and 1.27× to the AEP+SRAM system.
Finally, for the system executing models with AERP, the eDRAM op-
timized by 2DRP and Kelle scheduler provides a 1.29× improvement
in speedup and a 1.45× improvement in energy efficiency when
comparing Kelle+eDRAM to AERP+SRAM system. Specifically, the
2DRP mechanism greatly reduces refresh energy, enabling the Kelle
to take full advantage of eDRAM.

8.1.4 Overhead Analysis. The pie charts in Figure 13 display the
energy breakdown for the Kelle+eDRAM system. The reduced en-
ergy share for the KV cache highlights how eDRAM coupled with
Kelle algorithms alleviates memory access bottlenecks. Thanks to
the efficiency of systolic arrays for matrix-matrix multiplication,
the hardware overhead from KV recomputation is minimal, with
RSA consuming only a small portion of on-chip energy.

To accelerate the token eviction process, we introduce a Systolic
Evictor unit, which is a small computation unit coupled with the
RSA. It takes an area of 0.06𝑚𝑚2 (0.6% of the on-chip area) and
consumes power of 0.028W (0.4% of the on-chip power). The systolic
evictor avoids the stall of the LLM execution for KV cache eviction
and redundant memory and computation access. It improves the
system’s energy efficiency and reduces the latency by 5% and 7%.

8.2 Comparison with Other Accelerators
We compare Kelle+eDRAM with other cutting-edge LLM accelera-
tors. LLM.npu [86] enhances the on-device Neural Processing Unit
(NPU) offloading to reduce pre-filling latency by re-constructing
the prompt and model. DynaX [85] proposes dynamic fine-grained
structured pruning to enhance the efficiency of sparse attention
computation and achieves a 90% attention sparsity. Dynax alleviates
the computation bottleneck during the pre-filling stage. COMET [46]
quantizes the LLMs to 4-bit and designs high performance GPU
kernel to support the mixed-precision computation. As advanced
quantization techniques are not the main focus of this paper, we
configure COMET to quantize LLM weights to 8-bit and both acti-
vations and KV vectors to 4-bit, ensuring a comparable KV cache
storage budget to that of Kelle+eDRAM. Finally, we compare Kelle
with the NVIDIA Jetson Orin edge GPU [2] implementation of LLM
using FP8, measured with pynvml [3] and nvidia-smi [55].

As shown in Figure 14, Kelle+eDRAM achieves better improve-
ments in speedup and energy efficiency over other LLM accelerators.
LLM.npu and Dynax optimize the computation-intensive pre-filling
stage but do not address the KV cache bottleneck encountered dur-
ing the LLM decoding stage. The performance gains of Kelle over
COMET underscore the limitations of relying solely on KV cache
compression without dedicated hardware accelerator support.

8.3 Ablation Study

2
8

%

3
9

%

1
6

%

2
4

%

1
.1

6

1
.0

0

1
.0

8

1
.0

0

0.8

1.0

1.2

1.4

0%

50%

100%

R NR R NR

LLaMA3.2-3B LLaMA2-13B E
ne

rg
y

E
ffi

ci
en

cy

E
ne

rg
y

B
re

a
kd

ow
n KV Cache RSA

SRAM Energy Effi.

4
0

%

2
3

%

6
%

2
%

3
2

%

1
9

%

5
%

2
%

1
.0

0 1
.2

1 1
.5

1

1
.6

1

1
.0

0 1
.1

6 1
.3

8

1
.4

3

0.8

1.3

1.8

0%

50%

100%

Org Uni 2D 2K Org Uni 2D 2K

LLaMA3.2-3B LLaMA2-13B E
ne

rg
y

E
ffi

ci
en

cy

E
ne

rg
y

B
re

a
kd

ow
n Refresh Other Energy Effi.

(a) (b)

Figure 15: (a) Impact of KV cache recomputation in
Kelle+eDRAM. (b) Evaluation on 2DRP and Kelle scheduler.

0%

50%

100%

2K
-1

2
8

4K
-1

2
8

8K
-1

2
8

16
K

-1
28

2K
-5

1
2

4K
-5

1
2

8K
-5

1
2

16
K

-5
12

2K
-2

K

4K
-2

K

8K
-2

K

16
K

-2
K

E
n

er
g

y
B

re
ak

d
ow

n P RSA P Buffer P DRAM

D RSA D Buffer D DRAM

1.E+03

1.E+04

10 100P
e

rf
or

m
an

ce

Op. Intensity

Kelle
Recomp
No Recomp
Over Recomp

(a) (b)

Figure 16: (a) KV Cache Recomputation impact. (b) Evalua-
tion on long input sequences. P and D denote the prefilling
and decoding stage, respectively.

8.3.1 Impact of KV Cache Budget. Table 7 illustrates the energy
efficiency improvement of Kelle+eDRAM over different KV cache
budgets 𝑁 ′. Without eviction, the largest possible number of to-
kens will be 𝑁 ′ = 8750 for PG19. Results indicate that even under
this condition, Kelle achieves approximately 3× greater energy effi-
ciency over Original+SRAM, highlighting the robustness of Kelle.

8.3.2 Impact of the Recomputation. We compare the energy con-
sumption of Kelle+eDRAM with and without KV cache recompu-
tation. As shown in Figure 15 (a), the recomputation algorithm
effectively reduces the energy consumption of KV cache, with min-
imal increase in RSA energy consumption. Moreover, we profile
the popularity change of tokens during the pre-filling and decoding
stage across LLM architectures and tasks. On average, over 86% of
the popular tokens in the pre-filling stage continue to be popular
in the decoding stage, validating the execution strategy outlined in
Section 4.1.2.

Recomputation allows Kelle to store more tokens on-chip, re-
ducing DRAM access. When processing the LLaMA2-7B model,
accessing one KV vector from DRAM takes approximately 1.1 𝜇𝑠 .
In comparison, recomputing a KV vector using the RSA introduces
an additional latency of 3.2 𝜇𝑠 . Recomputation helps hide mem-
ory stalls by overlapping compute with memory access, reducing
overall latency and improving energy efficiency by an average of
25%. For example, loading four KV vectors from DRAM requires
4.4 𝜇𝑠 . With recomputation, three vectors are loaded, and one is
recomputed in parallel during the load, reducing the total latency
to 3.3 𝜇𝑠 . In terms of energy, the RSA remains active regardless
of the number of input vectors, so the incremental energy cost of
recomputation is negligible.

Figure 16 (a) presents the roofline model of Kelle under three
settings: No Recomp (without recomputation), Recomp (with a mod-
erate recomputation workload), and Over Recomp (with excessive

11

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianhua Xia and Sai Qian Zhang

Table 8: Energy efficiency
across refresh intervals.

LLaMA3.2-3B Task
Interval (𝜇𝑠) TriviaQA PG19

1050 3.91× 8.07×
525 3.65× 7.31×
131 3.06× 6.05×

Table 9: Energy efficiency
across different Batch Sizes.

Task PG
Batch Original AEP AERP Kelle
size +SRAM +SRAM +SRAM +eDRAM
16 1× 3.16× 4.33× 6.67×
4 1× 1.71× 1.81× 2.23×
1 1× 1.24× 1.36× 1.71×

recomputation). Recomputation improves performance by increas-
ing the effective memory bandwidth. However, as more KV vectors
are recomputed, the RSA becomes a bottleneck. This behavior is
reflected in the Over Recomp line, where Kelle transitions from a
memory-bound regime to a compute-bound regime.

8.3.3 Impact of 2DRP and Kelle Scheduler. Weevaluate Kelle+eDRAM
running the Llama2-7B model executing the PG19 task under four
strategies. Org strategy refreshes the eDRAM at its retention time
with a 45𝜇𝑠 interval, ensuring almost no data corruption. Uni strat-
egy uses a uniform refresh interval of 0.36𝑚𝑠 , the interval that
enables the same LLM accuracy achieved by 2DRP. 2DRP, denoted
as 2D applies varying refresh intervals based on attention scores
and bit positions. 2K strategy combines both 2DRP and the Kelle
scheduler. As depicted in Figure 15 (b), the finer-grained refresh
policy in 2DRP improves energy efficiency. With both 2DRP and
Kelle scheduler, the Kelle achieves the optimal performance.

8.3.4 Impact of eDRAM Retention Time. We assess the impact of
eDRAM retention time on Kelle’s performance, considering its
influence on the bit failure rate. Retention time is affected by various
factors, including design, technology nodes, and temperature [29,
38, 97]. We evaluate Kelle+eDRAM on the TriviaQA and PG19
tasks using 2DRP with different retention times. Specifically, we
reduce the Kelle retention time (45𝜇𝑠) to average refresh intervals
of 525𝜇𝑠 , 262𝜇𝑠 , and 131𝜇𝑠 , respectively. Table 8 shows the energy
efficiency of these two settings compared to the Original+SRAM
system. Thanks to AERP, the KV cache access overhead remains
a small fraction of the total energy consumption. Consequently,
the energy increase due to the retention time decrease is small,
allowing Kelle+eDRAM to maintain performance gains.

8.3.5 Impact of Input Sequence Length. We evaluate the energy
consumption of Kelle+eDRAM under long input sequence lengths
using the Llama2-7B model on the PG-19 dataset across different
input output sequence lengths. We use the format input length -
output length (e.g., "16K-128") to denote each experiment setting.
As shown in Figure 16 (b), when the input sequence is long and the
decoding length is short, the prefilling stage dominates the overall
energy consumption and the system becomes compute-bound. In
this case, Kelle achieves a moderate energy efficiency improvement
of 2.1× over the Original+SRAM baseline. As both the input and
output sequence lengths increase, the DRAM access energy for acti-
vations grows correspondingly. Under this more memory-intensive
scenario, Kelle delivers an average energy efficiency improvement
of 5.6× over Original+SRAM and 1.8× over AERP+SRAM, owing
to its efficient KV cache management strategies.

8.3.6 Impact of Batch Size. We compare Kelle performance across
different batch sizes using the Llama2-7B model on the PG-19

dataset, as shown in Table 9. While the energy efficiency improve-
ment of Kelle over the Original+SRAM baseline is less significant at
smaller batch sizes due to reduced utilization of the RSA and lower
data transfer efficiency for model weights, Kelle still consistently
outperforms all baselines. At a batch size of 1, Kelle achieves a
speedup of 71% over Original+SRAM, 37% over AEP+SRAM, and
25% over AERP+SRAM.

8.3.7 Impact of eDRAM Bandwidth. We conduct experiments to
evaluate Kelle under reduced eDRAMbandwidth (128GB/s), achieved
by halving the number of banks and doubling the capacity per
bank, while keeping the total eDRAM area and capacity constant.
Using the Llama2-7B model on PG-19 and TriviaQA, Kelle+eDRAM
achieves 1.47× and 1.35× energy gains over AERP+SRAM, and
6.31× and 5.42× over Original+SRAM. Though slightly lower than
full-bandwidth Kelle, these results show that increasing eDRAM ca-
pacity, even with reduced bandwidth, effectively cuts costly DRAM
accesses and improves bandwidth efficiency.

8.4 Discussion
8.4.1 Handle Long-Context Inference. For long context inference,
due to limited eDRAM capacity, excess KV data is offloaded to 16
GB DRAM. A simple analysis with LLaMA 2 7B shows that Kelle
can support up to 19,000 input tokens without AERP, assuming 8-bit
weights occupy 6.5 GB out of 16 GB DRAM and each token’s 16-bit
KV pair across 32 layers. Introducing AERP enables immediate KV
cache reduction after each layer’s execution, freeing memory to
accommodate the full input sequence in later layers. This allows
Kelle to support input sequences of up to around 60K tokens. Addi-
tionally, quantizing KV vectors to 4-bit enables support for up to
240K tokens. While an upper limit remains, it exceeds typical LLM
input lengths up to tens of thousands of tokens [7, 73, 75].

Although longer input sequences increase overhead, the per-
mutation invariant property of Equations 1 and 2 allows new KV
vectors to be placed in the same positions as evicted ones, greatly
simplifying the paging process. Additionally, the vectors can be
prefetched sequentially without requiring complex lookup mecha-
nisms. As a result, the prefetching overhead increases linearly with
the input length, avoiding disproportionate growth.

8.4.2 Integrate Kelle with GPU. While Kelle is implemented with a
systolic array, AERP can be adapted to GPUs; however, identifying
the token with the lowest attention score may be inefficient due to
the lack of a systolic evictor. 2DRP is specific to eDRAM to reduce
the refresh energy consumption. The eDRAM can be coupled with
the GPU’s existing memory system to store KV vectors. Finally, the
Kelle scheduler can be readily implemented using CUDA.

9 Conclusion
The KV caching technique is crucial for enhancing the efficiency
of LLMs. However, storing the extensive KV vectors results in a
substantial memory footprint and increased data access costs. In this
work, we introduce Kelle system that utilizes eDRAM as the primary
storage medium for KV vectors. The superior performance of Kelle
highlights the significant potential of eDRAM in implementing the
KV caching mechanism, paving the way for future research.

12

Kelle: Co-design KV Caching and eDRAM for Efficient LLM Serving in Edge Computing MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

References
[1] [n. d.]. Nangate freepdk45 open cell library. https://silvaco.com/services/library-

design/
[2] [n. d.]. NVIDIA Jetson Orin. https://www.siliconhighwaydirect.com/product-

p/900-13767-0000-000.htm.
[3] [n. d.]. pynvml: Python Bindings for the NVIDIA Management Library. https:

//pypi.org/project/pynvml/.
[4] Griffin Adams, Faisal Ladhak, Hailey Schoelkopf, and Raja Biswas. 2024. Cold

Compress: A Toolkit for Benchmarking KV Cache Compression Approaches.
https://www.answer.ai/posts/2024-08-01-cold-compress.html

[5] Aditya Agrawal, Amin Ansari, and Josep Torrellas. 2014. Mosaic: Exploiting the
spatial locality of process variation to reduce refresh energy in on-chip eDRAM
modules. In 2014 IEEE 20th International Symposium on High Performance Com-
puter Architecture (HPCA). IEEE, 84–95.

[6] Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. 2024. Quarot: Outlier-
free 4-bit inference in rotated llms. arXiv preprint arXiv:2404.00456 (2024).

[7] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai
Dang, Peng Wang, Shijie Wang, Jun Tang, et al. 2025. Qwen2. 5-vl technical
report. arXiv preprint arXiv:2502.13923 (2025).

[8] Rajeev Balasubramonian, Andrew B. Kahng, NaveenMuralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories. ACM Trans. Archit. Code Optim. 14, 2, Article
14 (June 2017), 25 pages. https://doi.org/10.1145/3085572

[9] B. Jayant Baliga. 2019. Synopsys. Wide Bandgap Semiconductor Power Devices
(2019). https://api.semanticscholar.org/CorpusID:239327327

[10] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. 2019.
PIQA: Reasoning about Physical Commonsense in Natural Language. In AAAI
Conference on Artificial Intelligence. https://api.semanticscholar.org/CorpusID:
208290939

[11] Tom B Brown. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[12] Fenglong Cai, Dong Yuan, Zhe Yang, and Lizhen Cui. 2024. Edge-llm: A collabo-
rative framework for large language model serving in edge computing. In 2024
IEEE International Conference on Web Services (ICWS). IEEE, 799–809.

[13] Mu-Tien Chang, Paul Rosenfeld, Shih-Lien Lu, and Bruce Jacob. 2013. Tech-
nology comparison for large last-level caches (L3Cs): Low-leakage SRAM, low
write-energy STT-RAM, and refresh-optimized eDRAM. In 2013 IEEE 19th In-
ternational Symposium on High Performance Computer Architecture (HPCA).
143–154. https://doi.org/10.1109/HPCA.2013.6522314

[14] Jiasi Chen and Xukan Ran. 2019. Deep learning with edge computing: A review.
Proc. IEEE 107, 8 (2019), 1655–1674.

[15] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao: A
Machine-Learning Supercomputer. In 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture. 609–622. https://doi.org/10.1109/MICRO.2014.
58

[16] Kyungsang Cho, Yongjun Lee, Young H Oh, Gyoo-cheol Hwang, and Jae W Lee.
2014. eDRAM-based tiered-reliability memory with applications to low-power
frame buffers. In Proceedings of the 2014 international symposium on Low power
electronics and design. 333–338.

[17] Ki Chul Chun, Pulkit Jain, Jung Hwa Lee, and Chris H. Kim. 2011. A 3T Gain
Cell Embedded DRAM Utilizing Preferential Boosting for High Density and
Low Power On-Die Caches. IEEE Journal of Solid-State Circuits 46, 6 (2011),
1495–1505. https://doi.org/10.1109/JSSC.2011.2128150

[18] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa
Schoenick, and Oyvind Tafjord. 2018. Think you have Solved Question An-
swering? Try ARC, the AI2 Reasoning Challenge. ArXiv abs/1803.05457 (2018).
https://api.semanticscholar.org/CorpusID:3922816

[19] Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, andMatt Gard-
ner. 2021. A dataset of information-seeking questions and answers anchored in
research papers. arXiv preprint arXiv:2105.03011 (2021).

[20] Jyotikrishna Dass, Shang Wu, Huihong Shi, Chaojian Li, Zhifan Ye, Zhongfeng
Wang, and Yingyan Lin. 2022. ViTALiTy: Unifying Low-rank and Sparse Approx-
imation for Vision Transformer Acceleration with a Linear Taylor Attention.
arXiv:2211.05109 [cs.CV] https://arxiv.org/abs/2211.05109

[21] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sra-
vankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien
Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor
Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith,

Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis
Anderson, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey
Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta
Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee,
Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der
Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu
Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo
Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasu-
den Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin
Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla,
Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan,
Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh,
Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan,
Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri
Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang,
Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen
Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan
Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert
Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim,
Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen,
Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra,
Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou,
Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn,
Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vin-
cent Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan
Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiao-
qing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag,
Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li,
Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon,
Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado,
Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben
Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon
Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Bur-
ton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu,
Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon
Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins,
David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem
Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
ElaineMontgomery, Eleonora Presani, Emily Hahn, EmilyWood, Erik Brinkman,
Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian,
Firat Ozgenel, Francesco Caggioni, Francisco Guzmán, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Govind Thattai, Grant Herman, Grigory Sizov, Guangyi, Zhang,
Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, HannahWang, Hanwen
Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter
Goldman, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai
Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste
Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein,
Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill,
Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal,
Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena,
Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin
Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav
Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi,
Meghan Keneally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir
Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar,
Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rit-
tner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant
Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi
Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah

13

https://silvaco.com/services/library-design/
https://silvaco.com/services/library-design/
https://www.siliconhighwaydirect.com/product-p/900-13767-0000-000.htm
https://www.siliconhighwaydirect.com/product-p/900-13767-0000-000.htm
https://pypi.org/project/pynvml/
https://pypi.org/project/pynvml/
https://www.answer.ai/posts/2024-08-01-cold-compress.html
https://doi.org/10.1145/3085572
https://api.semanticscholar.org/CorpusID:239327327
https://api.semanticscholar.org/CorpusID:208290939
https://api.semanticscholar.org/CorpusID:208290939
https://doi.org/10.1109/HPCA.2013.6522314
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/JSSC.2011.2128150
https://api.semanticscholar.org/CorpusID:3922816
https://arxiv.org/abs/2211.05109
https://arxiv.org/abs/2211.05109

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianhua Xia and Sai Qian Zhang

Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha
Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy,
Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy
Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha
Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve
Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez,
Tamar Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victo-
ria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla,
Vítor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir
Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable,
Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun
Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying
Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He,
Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and
Zhiwei Zhao. 2024. The Llama 3 Herd of Models. arXiv:2407.21783 [cs.AI]
https://arxiv.org/abs/2407.21783

[22] EE Times. 2013. Intel eDRAM Attacks Graphics in Pre 3-D IC Days. http:
//www.eetimes.com/document.asp?doc_id=1263303

[23] Chao Fang, Shouliang Guo, Wei Wu, Jun Lin, Zhongfeng Wang, Ming Kai Hsu,
and Lingzhi Liu. 2022. An efficient hardware accelerator for sparse transformer
neural networks. In 2022 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2670–2674.

[24] Eric J Fluhr, Steve Baumgartner, David Boerstler, John F Bulzacchelli, Timothy
Diemoz, Daniel Dreps, George English, Joshua Friedrich, Anne Gattiker, Tilman
Gloekler, et al. 2014. The 12-core power8™ processor with 7.6 tb/s io bandwidth,
integrated voltage regulation, and resonant clocking. IEEE Journal of Solid-State
Circuits 50, 1 (2014), 10–23.

[25] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2022. Gptq:
Accurate post-training quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323 (2022).

[26] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite, Ben Wang, Kevin Wang,
and Andy Zou. 2021. A framework for few-shot language model evaluation.
https://doi.org/10.5281/zenodo.5371628

[27] Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao.
2023. Model Tells You What to Discard: Adaptive KV Cache Compression for
LLMs. ArXiv abs/2310.01801 (2023). https://api.semanticscholar.org/CorpusID:
263609075

[28] Robert Giterman, Amir Shalom, Andreas Burg, Alexander Fish, and Adam
Teman. 2020. A 1-Mbit Fully Logic-Compatible 3T Gain-Cell Embedded DRAM
in 16-nm FinFET. IEEE Solid-State Circuits Letters 3 (2020), 110–113. https:
//doi.org/10.1109/LSSC.2020.3006496

[29] Robert Giterman, Amir Shalom, Andreas Burg, Alexander Fish, and Adam
Teman. 2020. A 1-Mbit Fully Logic-Compatible 3T Gain-Cell Embedded DRAM
in 16-nm FinFET. IEEE Solid-State Circuits Letters 3 (2020), 110–113. https:
//doi.org/10.1109/LSSC.2020.3006496

[30] Cong Guo, Jiaming Tang, Weiming Hu, Jingwen Leng, Chen Zhang, Fan Yang,
Yun-Bo Liu, Minyi Guo, and Yuhao Zhu. 2023. OliVe: Accelerating Large Lan-
guage Models via Hardware-friendly Outlier-Victim Pair Quantization. Pro-
ceedings of the 50th Annual International Symposium on Computer Architecture
(2023). https://api.semanticscholar.org/CorpusID:258179335

[31] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415 (2016).

[32] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney,
Yakun Sophia Shao, Kurt Keutzer, and Amir Gholami. 2024. KVQuant: To-
wards 10 Million Context Length LLM Inference with KV Cache Quantization.
arXiv:2401.18079 [cs.LG] https://arxiv.org/abs/2401.18079

[33] Yunhai Hu, Zining Liu, Zhenyuan Dong, Tianfan Peng, Bradley McDanel, and
Sai Qian Zhang. 2025. Speculative decoding and beyond: An in-depth survey of
techniques. arXiv preprint arXiv:2502.19732 (2025).

[34] Yunhai Hu, Tianhua Xia, Zining Liu, Rahul Raman, Xingyu Liu, Bo Bao, Eric
Sather, Vithursan Thangarasa, and Sai Qian Zhang. 2025. DREAM: Drafting
with Refined Target Features and Entropy-Adaptive Cross-Attention Fusion for
Multimodal Speculative Decoding. arXiv preprint arXiv:2505.19201 (2025).

[35] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-
vendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux,
Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B. arXiv:2310.06825 [cs.CL] https:
//arxiv.org/abs/2310.06825

[36] Mandar Joshi, Eunsol Choi, Daniel SWeld, and Luke Zettlemoyer. 2017. Triviaqa:
A large scale distantly supervised challenge dataset for reading comprehension.
arXiv preprint arXiv:1705.03551 (2017).

[37] Kingston Technology. 2024. Embedded Flash and DRAM Components. https:
//www.kingston.com/en/solutions/embedded-and-industrial

[38] W. Kong, P. C. Parries, G. Wang, and S. S. Iyer. 2008. Analysis of Retention Time
Distribution of Embedded DRAM - A New Method to Characterize Across-Chip
Threshold Voltage Variation. In 2008 IEEE International Test Conference. 1–7.
https://doi.org/10.1109/TEST.2008.4700556

[39] HT Kung. 1986. Memory requirements for balanced computer architectures.
ACM SIGARCH Computer Architecture News 14, 2 (1986), 49–54.

[40] Jungi Lee, Wonbeom Lee, and Jaewoong Sim. 2024. Tender: Accelerating Large
Language Models via Tensor Decomposition and Runtime Requantization. 2024
ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)
(2024), 1048–1062. https://api.semanticscholar.org/CorpusID:270620037

[41] Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. 2024. {InfiniGen}:
Efficient generative inference of large language models with dynamic {KV}
cache management. In 18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24). 155–172.

[42] Yaniv Leviathan, Matan Kalman, and Yossi Matias. 2023. Fast inference from
transformers via speculative decoding. In International Conference on Machine
Learning. PMLR, 19274–19286.

[43] Stephanie Lin, Jacob Hilton, and Owain Evans. 2022. TruthfulQA: Measuring
How Models Mimic Human Falsehoods. arXiv:2109.07958 [cs.CL] https://arxiv.
org/abs/2109.07958

[44] Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan
Zhuang. 2024. MiniCache: KV Cache Compression in Depth Dimension for
Large Language Models. arXiv preprint arXiv:2405.14366 (2024).

[45] Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. 2021. Pay attention to mlps.
Advances in neural information processing systems 34 (2021), 9204–9215.

[46] Lian Liu, Haimeng Ren, Long Cheng, Zhaohui Xu, Yudong Pan, Mengdi Wang,
Xiaowei Li, Yinhe Han, and Ying Wang. 2024. COMET: Towards Partical
W4A4KV4 LLMs Serving. arXiv:2410.12168 [cs.AR] https://arxiv.org/abs/
2410.12168

[47] Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo
Xu, Anastasios Kyrillidis, and Anshumali Shrivastava. 2023. Scissorhands: Ex-
ploiting the Persistence of Importance Hypothesis for LLM KV Cache Compres-
sion at Test Time. ArXiv abs/2305.17118 (2023). https://api.semanticscholar.
org/CorpusID:258947558

[48] Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir
Braverman, Beidi Chen, and Xia Hu. 2024. KIVI: A Tuning-Free Asymmetric
2bit Quantization for KV Cache. ArXiv abs/2402.02750 (2024). https://api.
semanticscholar.org/CorpusID:267413049

[49] Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen (Henry) Zhong, Zhaozhuo Xu,
Vladimir Braverman, Beidi Chen, and Xia Hu. 2024. KIVI: a tuning-free asym-
metric 2bit quantization for KV cache. In Proceedings of the 41st International
Conference on Machine Learning (Vienna, Austria) (ICML’24). JMLR.org, Article
1311, 13 pages.

[50] Siyuan Lu, Meiqi Wang, Shuang Liang, Jun Lin, and Zhongfeng Wang. 2020.
Hardware accelerator for multi-head attention and position-wise feed-forward
in the transformer. In 2020 IEEE 33rd International System-on-Chip Conference
(SOCC). IEEE, 84–89.

[51] Bradley McDanel, Sai Qian Zhang, Yunhai Hu, and Zining Liu. 2025. PipeSpec:
Breaking Stage Dependencies in Hierarchical LLM Decoding. arXiv preprint
arXiv:2505.01572 (2025).

[52] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016.
Pointer Sentinel Mixture Models. arXiv:1609.07843 [cs.CL]

[53] Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos santos, Caglar Gulcehre,
and Bing Xiang. 2016. Abstractive Text Summarization Using Sequence-to-
Sequence RNNs and Beyond. arXiv:1602.06023 [cs.CL] https://arxiv.org/abs/
1602.06023

[54] Duy-Thanh Nguyen, Nhut-Minh Ho, and Ik-Joon Chang. 2019. St-DRC: Stretch-
able DRAM refresh controller with no parity-overhead error correction scheme
for energy-efficient DNNs. In Proceedings of the 56th Annual Design Automation
Conference 2019. 1–6.

[55] NVIDIA Corporation. 2024. NVIDIA SystemManagement Interface (nvidia-smi).
https://developer.nvidia.com/system-management-interface.

[56] Xiurui Pan, Endian Li, Qiao Li, Shengwen Liang, Yizhou Shan, Ke Zhou, Yingwei
Luo, XiaolinWang, and Jie Zhang. 2024. Instinfer: In-storage attention offloading
for cost-effective long-context llm inference. arXiv preprint arXiv:2409.04992
(2024).

[57] Eunhyeok Park, Dongyoung Kim, and Sungjoo Yoo. 2018. Energy-efficient neural
network accelerator based on outlier-aware low-precision computation. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 688–698.

[58] Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason
Phang, Jana Thompson, Phu Mon Htut, and Samuel R. Bowman. 2022. BBQ: A
Hand-Built Bias Benchmark for Question Answering. arXiv:2110.08193 [cs.CL]
https://arxiv.org/abs/2110.08193

14

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
http://www.eetimes.com/document.asp?doc_id=1263303
http://www.eetimes.com/document.asp?doc_id=1263303
https://doi.org/10.5281/zenodo.5371628
https://api.semanticscholar.org/CorpusID:263609075
https://api.semanticscholar.org/CorpusID:263609075
https://doi.org/10.1109/LSSC.2020.3006496
https://doi.org/10.1109/LSSC.2020.3006496
https://doi.org/10.1109/LSSC.2020.3006496
https://doi.org/10.1109/LSSC.2020.3006496
https://api.semanticscholar.org/CorpusID:258179335
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://www.kingston.com/en/solutions/embedded-and-industrial
https://www.kingston.com/en/solutions/embedded-and-industrial
https://doi.org/10.1109/TEST.2008.4700556
https://api.semanticscholar.org/CorpusID:270620037
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2410.12168
https://arxiv.org/abs/2410.12168
https://arxiv.org/abs/2410.12168
https://api.semanticscholar.org/CorpusID:258947558
https://api.semanticscholar.org/CorpusID:258947558
https://api.semanticscholar.org/CorpusID:267413049
https://api.semanticscholar.org/CorpusID:267413049
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1602.06023
https://arxiv.org/abs/1602.06023
https://arxiv.org/abs/1602.06023
https://developer.nvidia.com/system-management-interface
https://arxiv.org/abs/2110.08193
https://arxiv.org/abs/2110.08193

Kelle: Co-design KV Caching and eDRAM for Efficient LLM Serving in Edge Computing MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

[59] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Brad-
bury, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. 2023. Ef-
ficiently scaling transformer inference. Proceedings of Machine Learning and
Systems 5 (2023), 606–624.

[60] Matt Poremba, Sparsh Mittal, Dong Li, Jeffrey S. Vetter, and Yuan Xie. 2015.
DESTINY: A tool for modeling emerging 3D NVM and eDRAM caches. In 2015
Design, Automation & Test in Europe Conference & Exhibition (DATE). 1543–1546.
https://doi.org/10.7873/DATE.2015.0733

[61] Team PyTorch. 2023. Accelerating generative ai with pytorch ii: Gpt, fast.
https://pytorch.org/blog/accelerating-generative-ai-2/

[62] Jiajun Qin, Tianhua Xia, Cheng Tan, Jeff Zhang, and Sai Qian Zhang. 2025.
PICACHU: Plug-In CGRA Handling Upcoming Nonlinear Operations in LLMs.
In Proceedings of the 30th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2. 845–861.

[63] Alec Radford. 2018. Improving language understanding by generative pre-
training. (2018).

[64] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners.
https://api.semanticscholar.org/CorpusID:160025533

[65] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog 1, 8 (2019), 9.

[66] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap.
2019. Compressive transformers for long-range sequence modelling. arXiv
preprint arXiv:1911.05507 (2019).

[67] Haihao Shen, Hanwen Chang, Bo Dong, Yu Luo, and Hengyu Meng. 2023.
Efficient LLM Inference on CPUs. arXiv:2311.00502 [cs.LG] https://arxiv.org/
abs/2311.00502

[68] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi
Chen, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang. 2023. Flexgen:
High-throughput generative inference of large language models with a single
gpu. In International Conference on Machine Learning. PMLR, 31094–31116.

[69] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
computing: Vision and challenges. IEEE internet of things journal 3, 5 (2016),
637–646.

[70] J. Soriaga. 2023. Accelerating Generative AI at the Edge. https://www.qualcomm.
com/news/onq/2023/11/accelerating-generative-ai-at-the-edge [Online; ac-
cessed 29-Mar-2025].

[71] Jacob R. Stevens, Rangharajan Venkatesan, Steve Dai, Brucek Khailany, and
Anand Raghunathan. 2021. Softermax: Hardware/Software Co-Design of an
Efficient Softmax for Transformers. arXiv:2103.09301 [cs.AR] https://arxiv.org/
abs/2103.09301

[72] Manu Suryavansh. 2020. Google Coral Edge TPU Board Vs NVIDIA Jetson Nano
Dev board Hardware Comparison.

[73] Qwen Team. 2024. Qwen2 technical report. arXiv preprint arXiv:2407.10671
(2024).

[74] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[75] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,
Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288 (2023).

[76] Fengbin Tu, Weiwei Wu, Shouyi Yin, Leibo Liu, and Shaojun Wei. 2018. RANA:
Towards Efficient Neural Acceleration with Refresh-Optimized Embedded
DRAM. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). 340–352. https://doi.org/10.1109/ISCA.2018.00037

[77] Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao
Ma, Fan Yang, Ruiping Wang, Yi Wu, and Furu Wei. 2023. BitNet: Scaling
1-bit Transformers for Large Language Models. arXiv:2310.11453 [cs.CL]
https://arxiv.org/abs/2310.11453

[78] Hanrui Wang, Zhekai Zhang, and Song Han. 2020. SpAtten: Efficient Sparse
Attention Architecture with Cascade Token and Head Pruning. 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA)
(2020), 97–110. https://api.semanticscholar.org/CorpusID:229298088

[79] Xiaotian Wang, Teng Tian, Letian Zhao, Wei Wu, and Xi Jin. 2022. Exploration
of balanced design in resource-constrained edge device for efficient CNNs. IEEE
Transactions on Circuits and Systems II: Express Briefs 69, 11 (2022), 4573–4577.

[80] Dieter F Wendel, Ron Kalla, James Warnock, Robert Cargnoni, Sam G Chu,
Joachim G Clabes, Daniel Dreps, David Hrusecky, Josh Friedrich, Saiful Islam,
et al. 2010. POWER7™, a highly parallel, scalable multi-core high end server
processor. IEEE Journal of Solid-State Circuits 46, 1 (2010), 145–161.

[81] Tianhua Xia and Sai Qian Zhang. 2024. Hyft: A Reconfigurable Softmax Accelera-
tor with Hybrid Numeric Format for both Training and Inference. In Proceedings
of the 29th ACM/IEEE International Symposium on Low Power Electronics and
Design (Newport Beach, CA, USA) (ISLPED ’24). Association for Computing
Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/3665314.3670816

[82] Jingyang Xiang and Sai Qian Zhang. 2024. DFRot: Achieving Outlier-Free and
Massive Activation-Free for Rotated LLMs with Refined Rotation. arXiv preprint
arXiv:2412.00648 (2024).

[83] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike
Lewis. 2024. Efficient Streaming Language Models with Attention Sinks.
arXiv:2309.17453 [cs.CL] https://arxiv.org/abs/2309.17453

[84] Kai Xiao, Jing Wan, Hui Xie, Yuxuan Zhu, Tian Tian, Wei Zhang, Yingxin Chen,
Jinshu Zhang, Lihui Zhou, Sheng Dai, et al. 2024. High performance Si-MoS2
heterogeneous embedded DRAM. Nature Communications 15, 1 (2024), 9782.

[85] Xiao Xiong, Zhaorui Chen, Yue Liang, Minghao Tian, Jiaxing Shang, Jiang
Zhong, and Dajiang Liu. 2025. DynaX: Sparse Attention Acceleration with
Dynamic X:M Fine-Grained Structured Pruning. In Proceedings of the 30th ACM
International Conference onArchitectural Support for Programming Languages and
Operating Systems, Volume 2 (Rotterdam, Netherlands) (ASPLOS ’25). Association
for Computing Machinery, New York, NY, USA, 260–274. https://doi.org/10.
1145/3676641.3715991

[86] Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu, Gang Huang, Mengwei
Xu, and Xuanzhe Liu. 2024. Fast On-device LLM Inference with NPUs.
arXiv:2407.05858 [cs.AI] https://arxiv.org/abs/2407.05858

[87] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou,
Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran
Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei
Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He,
Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu,
Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang,
Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang,
Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo,
and Zhihao Fan. 2024. Qwen2 Technical Report. arXiv:2407.10671 [cs.CL]
https://arxiv.org/abs/2407.10671

[88] Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao.
2024. PyramidInfer: Pyramid KV Cache Compression for High-throughput LLM
Inference. arXiv preprint arXiv:2405.12532 (2024).

[89] Chengshuo Yu, Taegeun Yoo, Hyunjoon Kim, Tony Tae-Hyoung Kim, Kevin
Chai Tshun Chuan, and Bongjin Kim. 2020. A logic-compatible eDRAM compute-
in-memory with embedded ADCs for processing neural networks. IEEE Trans-
actions on Circuits and Systems I: Regular Papers 68, 2 (2020), 667–679.

[90] Zhongkai Yu, Shengwen Liang, Tianyun Ma, Yunke Cai, Ziyuan Nan, Di Huang,
Xinkai Song, Yifan Hao, Jie Zhang, Tian Zhi, et al. 2024. Cambricon-llm: A
chiplet-based hybrid architecture for on-device inference of 70b llm. In 2024
57th IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
1474–1488.

[91] Zhongzhi Yu, Zheng Wang, Yuhan Li, Ruijie Gao, Xiaoya Zhou, Sreenidhi Reddy
Bommu, Yang Zhao, and Yingyan Lin. 2024. Edge-llm: Enabling efficient large
languagemodel adaptation on edge devices via unified compression and adaptive
layer voting. In Proceedings of the 61st ACM/IEEE Design Automation Conference.
1–6.

[92] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos.
2020. Gobo: Quantizing attention-based nlp models for low latency and energy
efficient inference. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 811–824.

[93] Hengrui Zhang, August Ning, Rohan Baskar Prabhakar, and David Wentzlaff.
2024. Llmcompass: Enabling efficient hardware design for large language model
inference. In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). IEEE, 1080–1096.

[94] Mingjin Zhang, Xiaoming Shen, Jiannong Cao, Zeyang Cui, and Shan Jiang. 2024.
EdgeShard: Efficient LLM Inference via Collaborative Edge Computing. IEEE
Internet of Things Journal (2024), 1–1. https://doi.org/10.1109/JIOT.2024.3524255

[95] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov,
Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali
Sridhar, Tianlu Wang, and Luke Zettlemoyer. 2022. OPT: Open Pre-trained
Transformer Language Models. arXiv:2205.01068 [cs.CL] https://arxiv.org/abs/
2205.01068

[96] Sai Qian Zhang, Bradley McDanel, and H. T. Kung. 2021. FAST: DNN Train-
ing Under Variable Precision Block Floating Point with Stochastic Rounding.
2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA) (2021), 846–860. https://api.semanticscholar.org/CorpusID:240288620

[97] Sai Qian Zhang, Thierry Tambe, Nestor Cuevas, Gu-YeonWei, and David Brooks.
2023. CAMEL: Co-Designing AI Models and Embedded DRAMs for Efficient
On-Device Learning. arXiv:2305.03148 [cs.AR] https://arxiv.org/abs/2305.03148

[98] Zhenyu (Allen) Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin
Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark W. Barrett,
ZhangyangWang, and Beidi Chen. 2023. H2O: Heavy-Hitter Oracle for Efficient
Generative Inference of Large Language Models. ArXiv abs/2306.14048 (2023).
https://api.semanticscholar.org/CorpusID:259263947

15

https://doi.org/10.7873/DATE.2015.0733
https://pytorch.org/blog/accelerating-generative-ai-2/
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/2311.00502
https://arxiv.org/abs/2311.00502
https://arxiv.org/abs/2311.00502
https://www.qualcomm.com/news/onq/2023/11/accelerating-generative-ai-at-the-edge
https://www.qualcomm.com/news/onq/2023/11/accelerating-generative-ai-at-the-edge
https://arxiv.org/abs/2103.09301
https://arxiv.org/abs/2103.09301
https://arxiv.org/abs/2103.09301
https://doi.org/10.1109/ISCA.2018.00037
https://arxiv.org/abs/2310.11453
https://arxiv.org/abs/2310.11453
https://api.semanticscholar.org/CorpusID:229298088
https://doi.org/10.1145/3665314.3670816
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://doi.org/10.1145/3676641.3715991
https://doi.org/10.1145/3676641.3715991
https://arxiv.org/abs/2407.05858
https://arxiv.org/abs/2407.05858
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://doi.org/10.1109/JIOT.2024.3524255
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://api.semanticscholar.org/CorpusID:240288620
https://arxiv.org/abs/2305.03148
https://arxiv.org/abs/2305.03148
https://api.semanticscholar.org/CorpusID:259263947

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianhua Xia and Sai Qian Zhang

[99] Youpeng Zhao, DiWu, and JunWang. 2024. ALISA: Accelerating Large Language
Model Inference via Sparsity-Aware KV Caching. arXiv preprint arXiv:2403.17312
(2024).

[100] Minxuan Zhou, Weihong Xu, Jaeyoung Kang, and Tajana Rosing. 2022. Tran-
spim: A memory-based acceleration via software-hardware co-design for trans-
former. In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 1071–1085.

16

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 LLM Workflow
	2.2 KV Caching
	2.3 Embedded DRAM
	2.4 Edge LLM Accelerator

	3 Why Use eDRAM for LLMs on Edge Devices?
	3.1 Benefits and Challenges of Expanding On-Chip Memory
	3.2 Pros and Cons of Integrating eDRAM
	3.3 Kelle: Co-design KV Caching and eDRAM

	4 Kelle Algorithm
	4.1 Attention-based Eviction and Recomputation Policy
	4.2 Two-Dimensional Adaptive Refresh Policy

	5 Kelle Edge Accelerator
	5.1 Memory Subsystem
	5.2 Reconfigurable Systolic Array
	5.3 Systolic Evictor

	6 Kelle Scheduler
	7 Accuracy Evaluation
	7.1 Main Accuracy Result
	7.2 Ablation Study

	8 Hardware Evaluation
	8.1 End-to-End Performance Evaluation
	8.2 Comparison with Other Accelerators
	8.3 Ablation Study
	8.4 Discussion

	9 Conclusion
	References

