
Lecture 01:
Introduction, Overview and DNN

Basics

ECE-GY 9483/CSCI-GA 3033
Special Topics in Electrical Engineering EFFICIENT AI AND

HARDWARE ACCELERATOR DESIGN

2

Basics of Deep Neural Networks
● Multi-layer Perceptrons (MLPs)

○ Fully-connected layers
○ Activation functions
○ Loss function
○ Backpropagation

● How forward and backward propagation is performed?
● How to compute the gradient?
● How to update the weight?
● How to initialize the weight before training?

3

Multi-layer Perceptrons

● A neural network consists of interconnected nodes, called neurons, organized into layers.
● Each neuron receives input signals (activations), performs a computation on them, and

produces an output signal that may be passed to other neurons in the network.

● Usually consists of fully-connected layers with nonlinear activation functions.

4

Fully-connected layers (Linear layers)

Input
Neurons/Features/

Activations

Output
Neurons/Features/

Activations

Weights/Synapses Y = XW + b
● X (input activations): B✕Cin

● Y (output activations): B✕Cout

● W (weights): Cin✕Cout

● b (bias): 1✕Cout

● Cin: Number of input activations
● Cout: Number of output activations
● B: batch size

Linear
Input

Nonlinear … Softmax
Output

Linear Nonlinear

Cin=4, Cout=3

5

Computational Cost for MLP
softm

ax

B
x2 B
x3

2x3

● Number of MACs:
○ Bx2x3 = 6B

● Storage cost:
○ 6 x 32 = 192 bits (Weights)
○ (2B + 3B) x 32 bits (Activation)

6

Sigmoid

● Function:
● Domain:
● Range: [0,1]
● Differentiable everywhere
● Derivative: δ(x)(1-δ(x))

7

Tanh

● Function:
● Domain:
● Range: [-1,1]
● Differentiable everywhere
● Derivative:

8

ReLU

● Domain:
● Range: [0,]
● Differentiable everywhere

9

Leaky ReLU

● Domain:
● Range:

ReLU
Leaky
ReLU

10

Softmax
● Domain: [-∞∞]N

● Range: [0,1]N
● It is a multivariate function

Linear
Input

Nonlinear … Softmax
Output

Linear Nonlinear

Block 1

In
p

u
t

Softmax

O
utput

Block 2
16✕16 16✕16

1✕
16

1✕
16

1✕
16

1✕
10

Block 3
16✕16

1✕
16

1✕
10

Block 4
16✕10

11

Block 1

In
p

u
t

Softmax

O
utput

Block 2 Block 3

(1
✕

10)
Loss Functions

● Loss functions quantify the difference between the DNN output and
the ground truth output in the training dataset.

Cross-entropy lossL2 loss

Block 4

G
round Truth Forward propagation Backward propagation

12

Softmax

● Domain:
● Range: [0,1]

When s has a
dimension of 3

Block 1

In
p

u
t

Softmax

O
utput

Block 2

1✕
10

Block 3

1✕
10

Block 4

1✕
10

1✕
10

13

Backpropagation for Nonlinear Layers

Linear Nonlinear

Block 1
16✕16

1✕
16

1✕
16

Nonlinear

1✕
16

1✕
16

1✕
16

1✕
16

Forward propagation
Backward propagation

● Due to the elementwise nature, usually the nonlinear layer does not change the input and
output shape during both forward and backward passes.

14

Backpropagation for Nonlinear Layers

● Tanh:

● ReLU:

● Leaky_ReLU:

● Sigmoid:

15

Backpropagation for Nonlinear Layers

Linear Nonlinear

Block 4
16✕10

1✕
16

1✕
10

Linear

1✕
16

1✕
10

1✕
16

1✕
10

Forward propagation
Backward propagation

● Due to the elementwise nature, usually the nonlinear layer does not change the input and
output shape during both forward and backward passes.

16✕10

16

Fully-connected layers (Linear layers)

Y = XW + b

● X (input activations): B✕Cin

● Y (output activations): B✕Cout

● W (weights): Cin✕Cout

● b (bias): 1✕Cout

Derivative wrt data

Derivative wrt bias

Derivative wrt weight

T T

1✕16 1✕10 10✕16

1✕1016✕10 16✕1

Linear

1✕
16

1✕
10

1✕
16

1✕
10

16✕10

17

Weight Decay and Dropout

● The loss function is usually attached with a weight
decay loss to penalize the complexity of the function
and prevent the overfitting.

● Dropout refers to the practice of disregarding certain
nodes in a layer at random during training.

● All the nodes will be there during inference.

● Can be used to prevent overfitting and reduce the
dependency on any one of a single node.

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." The journal of machine
learning research 15.1 (2014): 1929-1958.

18

Layer Dropout

Fan, Angela, Edouard Grave, and Armand Joulin. "Reducing transformer depth on demand with structured dropout."
arXiv preprint arXiv:1909.11556 (2019).

● LayerDrop, a form of structured dropout, which has a regularization effect during training and
allows for efficient skipping at inference time.

● It is possible to select sub-networks of any depth from one large network without having to
finetune them and with limited impact on performance.

● Usually used in transformer.

19

DNN Training Process
● An optimizer is a crucial element that adjusts DNN parameters during training. Its primary

role is to minimize the training loss defined by the loss function.
○ Epoch: The number of times the algorithm runs on the whole training dataset.
○ Batch: The size of block of dataset that is used to update the model weights.
○ Iteration: total_training_data_size/Batch
○ Learning rate: It is a parameter that provides the model a scale of how much model weights should be

updated.

Initial
weights

Final
weights

Initialized W for each layer.
For each epoch:
 Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.

 Update the weights
Update the learning rate (if necessary)

Training
loss

20

Batch, Iteration and Epoch
● A data batch refers to a subset of the entire training dataset used to train the

network.
● Iteration refers to a single update of the model's parameters.
● An epoch represents one complete pass through the entire training dataset. Here's

what typically happens during an epoch:
○ For example, if you have 1,000 training examples and you use a batch size of 100, it would

take 10 iterations to complete one epoch.
● The composition of minibatches typically changes after every epoch during the

training of a DNN.

21

DNN Training Process
● An optimizer is a crucial element that fine-tunes DNN parameters during training. Its primary

role is to minimize the model’s error or loss function, enhancing performance.
○ Epoch: The number of times the algorithm runs on the whole training dataset.
○ Batch: The size of block of dataset that is used to update the model weights dataset.
○ Iteration: total_trainingdata_size/Batch
○ Learning rate: It is a parameter that provides the model a scale of how much model weights should be

updated.

Initial
weights

Final
weights

Initialized W for each layer.
For each epoch:
 Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.

 Update the weights
Update the learning rate (if necessary)

22

Stochastic Gradient Descent (with Momentum)

● W’ = W - η dL/dW
● Due to the significant noise introduced during the SGD process, it is beneficial to

stabilize the process.
● W’ = W- ηgt gt → sgt-1+(1-s)dL/dW, s is a hyperparameter between 0 and 1, close to 1.

SGD without momentum SGD with momentum

23

RMSProp

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

● All operations are elementwise
operations.

● When the variance of gradients is
high, we scale down the gradient as
we want to be more conservative and
vice versa.

g = [0.02, -0.04, 1.6, -0.01]

1.6 will be scaled down with RMSProp

24

Adam Optimizer

Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014).

● Combine RMSProp with Momentum
SGD.

● By adapting the learning rate during
training, Adam converges much more
quickly than SGD.

25

DNN Training Process
● An optimizer is a crucial element that fine-tunes DNN parameters during training. Its primary

role is to minimize the model’s error or loss function, enhancing performance.
○ Epoch: The number of times the algorithm runs on the whole training dataset.
○ Batch: The size of block of dataset that is used to update the model weights dataset.
○ Iteration: total_trainingdata_size/Batch
○ Learning rate: It is a parameter that provides the model a scale of how much model weights should be

updated.

Initial
weights

Final
weights

Initialized W for each layer.
For each epoch:
 Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.

 Update the weights
Update the learning rate (if necessary)

26

Learning Rate Scheduler
● Learning rate η is an important hyperparameter for training the DNNs.
● A large learning rate can help the algorithm to converge quickly. But it can also

cause the algorithm to bounce around the minimum without reaching it or even
jumping over it if it is too large.

● If the learning rate is too small, the optimizer may take too long to converge or get
stuck in a plateau if it is too small.

W’ = W- η gt

27

Multistage Learning Rate

● The learning rate is reduced by a fixed
amount after every T epochs.

● Typically, the learning rate is reduced to
10% of its value after every T epochs.

● Widely used in image classification task.

28

Cosine Learning Rate

Loshchilov, Ilya, and Frank Hutter. "Sgdr: Stochastic gradient descent with warm restarts." arXiv preprint
arXiv:1608.03983 (2016).

● We propose to periodically
simulate warm restarts of SGD,
where in each restart the learning
rate is initialized to some value and
is scheduled to decrease.

● Periodic restart can effectively
avoid local minima and saddle
points during the training.

29

Cosine Learning Rate

Loshchilov, Ilya, and Frank Hutter. "Sgdr: Stochastic gradient descent with warm restarts." arXiv preprint arXiv:1608.03983
(2016).

● Tcur accounts for how
many iterations have
been performed since
the last restart.

● Tcur is updated at
each iteration t.

● The SGD is restarted
once Ti epochs are
performed, where i is
the index of the run.

● Ti may increase with i.

30

Cyclical Learning Rate

Smith, Leslie N. "Cyclical learning rates for training neural networks." 2017 IEEE winter conference on applications of
computer vision (WACV). IEEE, 2017.

● Increasing the learning rate might have a short
term negative effect and yet achieve a longer term
beneficial effect.

31

Cyclical Learning Rate

Smith, Leslie N. "Cyclical learning rates for training neural networks." 2017 IEEE winter conference on applications of
computer vision (WACV). IEEE, 2017.

● The red curve shows the result of training
with cyclical learning rate achieves the
shortest convergence time.

32

DNN Training Process
● An optimizer is a crucial element that fine-tunes DNN parameters during training. Its primary

role is to minimize the model’s error or loss function, enhancing performance.
○ Epoch: The number of times the algorithm runs on the whole training dataset.
○ Batch: The size of block of dataset that is used to update the model weights dataset.
○ Iteration: total_trainingdata_size/Batch
○ Learning rate: It is a parameter that provides the model a scale of how much model weights should be

updated.

Initial
weights

Final
weights

Initialized W for each layer.
For each epoch:
 Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.

 Update the weights
Update the learning rate (if necessary)

33

DNN Initialization: Kaiming Initialization

He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification."
Proceedings of the IEEE international conference on computer vision. 2015.

● Kaiming initialization is designed for modern DNN that uses ReLU.

● Target: ensure the activation variance is the same across
different layers.

● Assumption:
○ ReLU activation.
○ Weight is normally distributed with mean of zero.
○ Weight and activations are independent.

Linear

xl

yl

34

Derivation

Assume Wl has a shape of ml by nl, and xl has a size of nl ✕1, then yl has a size of ml
✕1.
For each element yl,i of yl, its variance

Assume each pair of Wl,i,j and xj are independent random variable, then we have:

Assume Wl,i,j follows a normal distribution with mean of 0, that is E(Wl,i,j) = 0, then:

35

Derivation
Let see how E(xl,j

2) is related to the variance of yl-1,j, where xl,j=ReLU(yl-1,j)

Then we have:

Therefore, we have:

Given this, we have:

36

Derivation

In order to ensure the variance of y does not change, we have to make sure:

