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Basics of Deep Neural Networks
● Multi-layer Perceptrons (MLPs)

○ Fully-connected layers
○ Activation functions
○ Loss function
○ Backpropagation

● How forward and backward propagation is performed?
● How to compute the gradient?
● How to update the weight?
● How to initialize the weight before training?
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Multi-layer Perceptrons

● A neural network consists of interconnected nodes, called neurons, organized into layers. 
● Each neuron receives input signals (activations), performs a computation on them, and 

produces an output signal that may be passed to other neurons in the network.

● Usually consists of fully-connected layers with nonlinear activation functions.
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Fully-connected layers (Linear layers)

Input
Neurons/Features/

Activations

Output
Neurons/Features/

Activations

Weights/Synapses Y = XW + b
● X (input activations): B✕Cin

● Y (output activations): B✕Cout

● W (weights): Cin✕Cout

● b (bias): 1✕Cout

● Cin: Number of input activations
● Cout: Number of output activations
● B: batch size

Linear
Input

Nonlinear … Softmax
Output

Linear Nonlinear

Cin=4, Cout=3
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Computational Cost for MLP
softm

ax

B
x2 B
x3

2x3

● Number of MACs: 
○ Bx2x3 = 6B

● Storage cost: 
○ 6 x 32 = 192 bits (Weights)
○ (2B + 3B) x 32 bits (Activation)
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Sigmoid

● Function: 
● Domain: 
● Range: [0,1]
● Differentiable everywhere
● Derivative: δ(x)(1-δ(x))
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Tanh

● Function: 
● Domain: 
● Range: [-1,1]
● Differentiable everywhere
● Derivative: 
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ReLU

● Domain: 
● Range: [0,    ]
● Differentiable everywhere
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Leaky ReLU

● Domain: 
● Range: 

ReLU
Leaky
ReLU
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Softmax
● Domain: [-∞∞]N

● Range: [0,1]N
● It is a multivariate function

Linear
Input

Nonlinear … Softmax
Output

Linear Nonlinear

Block 1

In
p

u
t

Softmax

O
utput

Block 2
16✕16 16✕16

1✕
16

1✕
16

1✕
16

1✕
10

Block 3
16✕16

1✕
16

1✕
10

Block 4
16✕10



11

Block 1
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10)
Loss Functions

● Loss functions quantify the difference between the DNN output and 
the ground truth output in the training dataset.

Cross-entropy lossL2 loss

Block 4

G
round Truth Forward propagation Backward propagation
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Softmax

● Domain: 
● Range: [0,1]

When s has a 
dimension of 3
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Backpropagation for Nonlinear Layers

Linear Nonlinear

Block 1
16✕16

1✕
16
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16

Nonlinear

1✕
16
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1✕
16

1✕
16

Forward propagation
Backward propagation

● Due to the elementwise nature, usually the nonlinear layer does not change the input and 
output shape during both forward and backward passes.
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Backpropagation for Nonlinear Layers

● Tanh:  

● ReLU:  

● Leaky_ReLU:  

● Sigmoid:
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Backpropagation for Nonlinear Layers

Linear Nonlinear

Block 4
16✕10
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Linear
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Forward propagation
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● Due to the elementwise nature, usually the nonlinear layer does not change the input and 
output shape during both forward and backward passes.

16✕10
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Fully-connected layers (Linear layers)

Y = XW + b

● X (input activations): B✕Cin

● Y (output activations): B✕Cout

● W (weights): Cin✕Cout

● b (bias): 1✕Cout

Derivative wrt data

Derivative wrt bias

Derivative wrt weight

T T
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Weight Decay and Dropout

● The loss function is usually attached with a weight 
decay loss to penalize the complexity of the function 
and prevent the overfitting.

● Dropout refers to the practice of disregarding certain 
nodes in a layer at random during training.

● All the nodes will be there during inference.

● Can be used to prevent overfitting and reduce the 
dependency on any one of a single node.

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." The journal of machine 
learning research 15.1 (2014): 1929-1958.
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Layer Dropout

Fan, Angela, Edouard Grave, and Armand Joulin. "Reducing transformer depth on demand with structured dropout." 
arXiv preprint arXiv:1909.11556 (2019).

● LayerDrop, a form of structured dropout, which has a regularization effect during training and 
allows for efficient skipping at inference time. 

● It is possible to select sub-networks of any depth from one large network without having to 
finetune them and with limited impact on performance.

● Usually used in transformer.
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DNN Training Process
● An optimizer is a crucial element that adjusts DNN parameters during training. Its primary 

role is to minimize the training loss defined by the loss function.
○ Epoch: The number of times the algorithm runs on the whole training dataset.
○ Batch: The size of block of dataset that is used to update the model weights. 
○ Iteration: total_training_data_size/Batch
○ Learning rate: It is a parameter that provides the model a scale of how much model weights should be 

updated.

Initial 
weights

Final
weights

Initialized W for each layer.
For each epoch:
           Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.

           Update the weights
Update the learning rate (if necessary)

Training 
loss
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Batch, Iteration and Epoch
● A data batch refers to a subset of the entire training dataset used to train the 

network.
● Iteration refers to a single update of the model's parameters.
● An epoch represents one complete pass through the entire training dataset. Here's 

what typically happens during an epoch:
○ For example, if you have 1,000 training examples and you use a batch size of 100, it would 

take 10 iterations to complete one epoch.
● The composition of minibatches typically changes after every epoch during the 

training of a DNN.
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DNN Training Process
● An optimizer is a crucial element that fine-tunes DNN parameters during training. Its primary 

role is to minimize the model’s error or loss function, enhancing performance.
○ Epoch: The number of times the algorithm runs on the whole training dataset.
○ Batch: The size of block of dataset that is used to update the model weights dataset. 
○ Iteration: total_trainingdata_size/Batch
○ Learning rate:  It is a parameter that provides the model a scale of how much model weights should be 

updated.

Initial 
weights

Final
weights

Initialized W for each layer.
For each epoch:
           Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.

           Update the weights
Update the learning rate (if necessary)
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Stochastic Gradient Descent (with Momentum)

● W’ = W - η dL/dW 
● Due to the significant noise introduced during the SGD process, it is beneficial to 

stabilize the process.
● W’ = W- ηgt    gt → sgt-1+(1-s)dL/dW, s is a hyperparameter between 0 and 1, close to 1.

SGD without momentum SGD with momentum
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RMSProp

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

● All operations are elementwise 
operations.

● When the variance of gradients is 
high, we scale down the gradient as 
we want to be more conservative and 
vice versa.

g = [0.02, -0.04, 1.6, -0.01]

1.6 will be scaled down with RMSProp
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Adam Optimizer

Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014).

● Combine RMSProp with Momentum 
SGD.

● By adapting the learning rate during 
training, Adam converges much more 
quickly than SGD.
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DNN Training Process
● An optimizer is a crucial element that fine-tunes DNN parameters during training. Its primary 

role is to minimize the model’s error or loss function, enhancing performance.
○ Epoch: The number of times the algorithm runs on the whole training dataset.
○ Batch: The size of block of dataset that is used to update the model weights dataset. 
○ Iteration: total_trainingdata_size/Batch
○ Learning rate: It is a parameter that provides the model a scale of how much model weights should be 

updated.

Initial 
weights

Final
weights

Initialized W for each layer.
For each epoch:
           Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.

           Update the weights
Update the learning rate (if necessary)
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Learning Rate Scheduler
● Learning rate η is an important hyperparameter for training the DNNs.
● A large learning rate can help the algorithm to converge quickly. But it can also 

cause the algorithm to bounce around the minimum without reaching it or even 
jumping over it if it is too large. 

● If the learning rate is too small, the optimizer may take too long to converge or get 
stuck in a plateau if it is too small.

W’ = W- η gt
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Multistage Learning Rate 

● The learning rate is reduced by a fixed 
amount after every T epochs.

● Typically, the learning rate is reduced to 
10% of its value after every T epochs.

● Widely used in image classification task.
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Cosine Learning Rate 

Loshchilov, Ilya, and Frank Hutter. "Sgdr: Stochastic gradient descent with warm restarts." arXiv preprint 
arXiv:1608.03983 (2016).

● We propose to periodically 
simulate warm restarts of SGD, 
where in each restart the learning 
rate is initialized to some value and 
is scheduled to decrease.

● Periodic restart can effectively 
avoid local minima and saddle 
points during the training.
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Cosine Learning Rate 

Loshchilov, Ilya, and Frank Hutter. "Sgdr: Stochastic gradient descent with warm restarts." arXiv preprint arXiv:1608.03983 
(2016).

● Tcur accounts for how 
many iterations have 
been performed since 
the last restart.

● Tcur is updated at 
each iteration t.

● The SGD is restarted 
once Ti epochs are 
performed, where i is 
the index of the run.

● Ti may increase with i.
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Cyclical Learning Rate 

Smith, Leslie N. "Cyclical learning rates for training neural networks." 2017 IEEE winter conference on applications of 
computer vision (WACV). IEEE, 2017.

● Increasing the learning rate might have a short 
term negative effect and yet achieve a longer term 
beneficial effect.
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Cyclical Learning Rate 

Smith, Leslie N. "Cyclical learning rates for training neural networks." 2017 IEEE winter conference on applications of 
computer vision (WACV). IEEE, 2017.

● The red curve shows the result of training 
with cyclical learning rate achieves the 
shortest convergence time.
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DNN Training Process
● An optimizer is a crucial element that fine-tunes DNN parameters during training. Its primary 

role is to minimize the model’s error or loss function, enhancing performance.
○ Epoch: The number of times the algorithm runs on the whole training dataset.
○ Batch: The size of block of dataset that is used to update the model weights dataset. 
○ Iteration: total_trainingdata_size/Batch
○ Learning rate: It is a parameter that provides the model a scale of how much model weights should be 

updated.

Initial 
weights

Final
weights

Initialized W for each layer.
For each epoch:
           Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.

           Update the weights
Update the learning rate (if necessary)
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DNN Initialization: Kaiming Initialization

He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." 
Proceedings of the IEEE international conference on computer vision. 2015.

● Kaiming initialization is designed for modern DNN that uses ReLU.

● Target: ensure the activation variance is the same across 
different layers.

● Assumption:
○ ReLU activation.
○ Weight is normally distributed with mean of zero.
○ Weight and activations are independent.

Linear

xl

yl
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Derivation

Assume Wl has a shape of ml by nl, and xl has a size of nl ✕1, then yl has a size of ml 
✕1.
For each element yl,i of yl, its variance 

Assume each pair of Wl,i,j and xj are independent random variable, then we have: 

Assume Wl,i,j follows a normal distribution with mean of 0, that is E(Wl,i,j) = 0, then:
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Derivation
Let see how E(xl,j

2) is related to the variance of yl-1,j, where xl,j=ReLU(yl-1,j)

Then we have:

Therefore, we have: 

Given this, we have:
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Derivation

In order to ensure the variance of y does not change, we have to make sure:


