
Lecture 02: 
CNN, RNN and Variants
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Notes
● Great job! All of you have made the selection.
● We are going to release the reading list assignment by tonight!
● You can choose to send me the presentation, or we can present it using your 

laptop.
● Please keep the time ~15-20 mins for AI paper, and ~30-35mins for AI 

hardware paper.
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Recap
● DNN basics

○ Multilayer perceptron
■ Linear layer, activation function, softmax layer

○ Loss functions
○ Weights decay
○ Dropout
○ Optimizer
○ Learning rate scheduler
○ Weight Initialization
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Topics
● Convolutional Neural Network

○ Basic building blocks
○ Popular CNN architectures

■ ResNet, MobileNet, ShuffleNet, SqueezeNet, DenseNet, EfficientNet, ConvNext, ShiftNet
○ CNN architectures for other vision tasks

■ Image Segmentation, Object Detection
● Recurrent Neural Network

○ Basic building blocks
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Convolutional Neural Networks
● Convolutional Neural Networks (CNNs) are a type of artificial neural network 

designed for processing structured grid data, such as images. They're particularly 
effective in tasks like image recognition, object detection and segmentation.

● The building blocks of a CNN includes:
○ Convolutional layer
○ Activation layer
○ Normalization layer
○ Pooling layer
○ Softmax layer
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Convolutional Neural Networks
● Convolutional Neural Networks (CNNs) are a type of artificial neural network 

designed for processing structured grid data, such as images. They're particularly 
effective in tasks like image recognition, object detection and segmentation.

● The building blocks of a CNN includes:
○ Convolutional layer
○ Activation layer
○ Normalization layer
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Convolutional Layers: Terminology

● Core building block of a CNN, it is also the most computational intensive layer.

Conv

Filter Output feature map
Output activation

Input feature maps
Input activation

H
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C

Kernel

Feature 
map
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Convolutional Layers

● Core building block of a CNN, it is also the most computational intensive layer.

Conv  = 

 * 

  = * 

 * 
Filter Output feature mapInput feature maps
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Convolutional Layers

 =  +  + 

Step 2
● Each kernel moves across the spatial 

dimensions of feature maps in the input 
activations, analyzing the information 
within those spatial dimensions.

● The information from each feature maps 
are then aggregated by summing the 
Convolutional feature maps together.

● A bias may be introduced.
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2D Convolution: An Example
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Paddings

* 25=
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preserved the spatial size 
of the output features.
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Stride

padding = 0, stride = 1 padding = 1, stride = 1padding = 0, stride = 2 padding = 1, stride = 2

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
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Summary
● Hout = (Hin−K+2P)/S+1
● Hin and Hout are the spatial sizes of the input and convolutional feature maps.
● K is the weight kernel size
● P is the padding size
● S is the stride
● For example:

○ For input size of 224x224x3, weight kernel size is 3x3, padding size is 1 
and stride size is 1, then the output size is (224-3+2)/1 + 1 = 224.

 *  = K
K

Hin

Hin

Hout

Hout
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Computational Cost

 =  +  + 

Step 2
● Each kernel moves across the spatial 

dimensions of feature maps in the input 
activations, analyzing the information 
within those spatial dimensions.

● The information from each feature maps 
are then aggregated by summing the 
Convolutional feature maps together.

● A bias may be introduced.

Convolutional 
feature maps * 
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 = 
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Computational cost in Multiply–accumulate operations (MAC): E✖F✖K✖K✖C

E

F

E

F

E

F

K
K

W

H

C



15
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Convolution
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● Number of MACs: M✕K✕K✕C✕E✕F
● Storage cost:

32✕(M✕C✕K✕K+C✕H✕W+M✕E✕F)

C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps
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Computational Cost: Standard Convolution

● Number of MACs: B✕M✕K✕K✕C✕E✕F
● Storage cost:

32✕(M✕C✕K✕K+B✕C✕H✕W+B✕M✕E✕F)

B: batch size
C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

K
K
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Receptive Field of CNN across Layers
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0 0 0 0 0 

0 0 0 0 0 

0 

0 

0 

0 

0 

0 

12 20

20 25 -10 

5 3 -7 

3

0 0 0 0 0 

0 0 0 0 0 

0 

0 

0 

0 

0 

0 

24 -9

-19 14 -1 

-5 4 7 

12

● Assume a kernel size of 3 by 3.
● Every elements at layer i is a function of the entire receptive fields of the previous layers.

Layer i + 1 Layer i + 2

1 0 

3 -1 -2 

4 0 -3 

5 

0 0 0 0 0 

0 0 0 0 0 

0 

0 

0 

0 

0 

0 



24

Activation Functions: ReLU
● Rectifier linear operation (ReLU) applies an elementwise activation function to the 

output feature maps.              
● This leaves the size of the output feature maps unchanged.
● f(x) = x if x > 0, f(x) = 0 otherwise. 

ReLU
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3 0 0
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Activation Functions: GeLU

● Gaussian error linear unit (GeLU):

Hendrycks, Dan, and Kevin Gimpel. "Gaussian error linear units (gelus)." arXiv preprint arXiv:1606.08415 (2016).

● GeLU is increasingly being adopted in 
transformers and CNNs today.
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Xc

X: HW ✕ B ✕ C

B

Yc

B

Y: HW ✕ B ✕ C

Batch 
Normalization

Ioffe, Sergey. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv 
preprint arXiv:1502.03167 (2015).

Batch Normalization

● Batch Normalization (BatchNorm) is a technique used in deep learning to improve the training stability 
and performance of neural networks.
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Batch Normalization

● For each channel c, we have:
○ Xc: (HW x B)
○ μc and δc are the mean and standard deviation of Xc.
○ αc and βc are learnable parameters
○ αc, βc, μc, δc are scalers

● Overall, we have:
○ μ, δ, α and β all have a length of of C
○ μ, δ, α and β are all fixed during the inference
○ μ, δ are statistics based on the training dataset

Xc

X: HW ✕ B ✕ C

B

x
For each c∈C
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 XM

Batch Normalization: During Inference
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● pc can be merged into the CNN weights.
● qc can be merged into the CNN bias.

...
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● Given all the parameters are fixed, for each channel c, we have:

Batch 
Normalization

Conv
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Batch Normalization
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● For each channel c, we have:

✖ p1

✖ p2

✖ pN

Conv

● We can fold in the p and q to 
the weights and bias of 
convolutional layer during 
inference and reduce the online 
computational cost.
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Pooling
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● Enhance the model invariance to spatial transformations such as translation and rotation, thereby 
reducing the risk of overfitting.

● Reduce the spatial size of the representation and reduce the amount of parameters and 
computation in the CNN.
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Fully Connected Layers
● Neurons in a fully connected layer have full connections to all activations in the 

previous layer, as seen in regular neural networks. 

● Normally used in the last several layers to 
generate the classification results.
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CNN Architecture for Image Classification Task
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● For image classification task, during the forward propagation of CNN, the spatial 
size reduces while the number of channels increases.

Input Feature Maps
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Topics
● Convolutional Neural Network

○ Basic building blocks
○ Popular CNN architectures

■ ResNet, MobileNet, ShuffleNet, SqueezeNet, DenseNet, EfficientNet, ConvNext, ShiftNet
○ CNN architectures for other vision tasks

■ Image Segmentation, Object Detection
● Recurrent Neural Network

○ Basic building blocks
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ResNet

● When deeper networks are able to start converging, a degradation problem has been exposed: with the 
network depth increasing, accuracy gets saturated and then degrades rapidly.

● By introducing the residual link, we reduce the complexity of the learning process by ensuring that the 
performance is at least as good as the shallower DNN.

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2016.

Conv 1x1
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ResNet

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2016.
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ResNet Performance

Performance on ImageNet

Performance on CIFAR-10
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MobileNet

Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint 
arXiv:1704.04861 (2017).
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MobileNet

 = 
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Step 1 Depthwise Convolution
● Each kernel moves across the spatial 

dimensions of feature maps in the input 
activations, analyzing the information 
within those spatial dimensions.

● The information from each feature maps 
are then aggregated by multiplying with 
the weight in the pointwise conv kernel 
and summing the Convolutional feature 
maps together.

● A bias may be introduced.
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Standard Convolution
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● Number of MACs: M✕K✕K✕C✕E✕F
● Storage cost:

32✕(M✕C✕K✕K+C✕H✕W+M✕E✕F)

C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

K
K
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Depthwise Separable Convolution
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Why Depthwise Conv is Cheaper?

● With a batch size of B, number of MACs are:
● Number of MACs: B✕K✕K✕C✕E✕F + B✕M✕C✕E✕F
● Storage cost: 32✕(B✕C✕H✕W+C✕K✕K+B✕C✕E✕F+M✕C+B✕M✕E✕F)

● Number of MACs for depthwise separable Conv: K✕K✕C✕E✕F + M✕C✕E✕F
● Number of MACs for standard Conv: M✕K✕K✕C✕E✕F
● When M is large the computational saving is about K✕K (9) times.
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MobileNet-V2

Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2018.

● Add residual link between the 
blocks.

● Adopt ReLU6 replace ReLU.
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Group Convolution

 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural 
networks." Communications of the ACM 60.6 (2017): 84-90.

H

W

C
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● The original MAC: E✕F✕K✕K✕C✕M
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Group Convolution

 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural networks." 
Communications of the ACM 60.6 (2017): 84-90.

H

W

C

H
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C

● Group size = 2
● Each group of feature maps within the input only convolved with partial weight kernels.
● This will lead to a large saving on memory consumption and computational cost.
● The number of MAC: E✕F✕K✕K✕C✕M/G
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ShuffleNet

Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." Proceedings of 
the IEEE conference on computer vision and pattern recognition. 2018.

shuffle

● The shuffle operation is used to 
exchange the information across 
the groups.

● The shuffle operation with group 
convolution can replace the 
conventional full-channel 
convolution without noticeable 
accuracy degradation.

Conv

Conv

Conv
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ShuffleNet

Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." Proceedings of 
the IEEE conference on computer vision and pattern recognition. 2018.
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ShuffleNet

● G is the group size, a✕ is the scaling factor on number of channels.
● Shuffling operation can greatly improve the accuracy.
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ShuffleNet

● Under the same level of computational complexity, shufflenet is better than 
MobileNet.
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SqueezeNet

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size." arXiv 
preprint arXiv:1602.07360 (2016).

● Achieves great accuracy with 50x smaller 
parameters than other baselines (4.8MB).

● Some strategies: 
○ Replace 3x3 filters with 1x1 filters.
○ Decrease the number of input channels to 

3x3 filters.
○ Downsample late in the network so that 

convolution layers have large activation 
maps.

● Aims to reduce the CNN parameter size, not 
computational cost.
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SqueezeNet

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size." arXiv 
preprint arXiv:1602.07360 (2016).
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SqueezeNet

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size." arXiv 
preprint arXiv:1602.07360 (2016).

● Achieve a comparable performance as AlexNet, but still suboptimal compare against other 
architectures.

● ResNet 50: 100MB, Vision Transformer base> 300MB. 
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DenseNet

Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2017.

● ResNet:

● DeseNet:

● H(.) is the function of batch 
normalization, followed by ReLU and 3x3 
Convolution.
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DenseNet

Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2017.

H

W

C C
oncat

Weight 
filters



54

DenseNet

Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2017.
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EfficientNet

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International 
conference on machine learning. PMLR, 2019.

● It is critical to balance all dimensions of network width/depth/resolution, and surprisingly such balance 
can be achieved by simply scaling each of them with constant ratio.
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EfficientNet

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International 
conference on machine learning. PMLR, 2019.

● SiLU is used in the EfficientNet architecture.
● SiLU(x) = x∗σ(x)
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ConvNext
● Leverage the insight of vision transformer to enhance the 

performance of CNN.
● Some major changes to change ResNet 50 to ConvNext 50:

○ Change number of blocks in each stage from (3, 4, 6, 3) 
in ResNet-50 to (3, 3, 9, 3).

○ Use depthwise separable convolution
○ Large convolutional kernel.
○ Replacing ReLU with GELU
○ Substituting BN with LN.

Liu, Zhuang, et al. "A convnet for the 2020s." Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition. 2022.
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ShiftNet

Wu, Bichen, et al. "Shift: A zero flop, zero parameter alternative to spatial convolutions." Proceedings of the IEEE conference 
on computer vision and pattern recognition. 2018.

● Completely remove the computation for the 
depthwise convolution.

● The shift positions are predefined for each 
channel.
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ShiftNet

Wu, Bichen, et al. "Shift: A zero flop, zero parameter alternative to spatial convolutions." Proceedings of the IEEE conference 
on computer vision and pattern recognition. 2018.

Shift Left

No Shift

Shift Down

zeros
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ShiftNet
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Deformable Convolutional Networks

Dai, Jifeng, et al. "Deformable convolutional networks." Proceedings of the IEEE international conference on computer 
vision. 2017.

● Convolutional neural networks (CNNs) 
are inherently limited to model geometric 
transformations due to the fixed 
geometric structures in their building 
modules.

● This paper proposed the “learnable 
weight kernel shape”.
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Deformable Convolutional Networks

Dai, Jifeng, et al. "Deformable convolutional networks." Proceedings of the IEEE international conference on computer 
vision. 2017.

Can be fractional
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Deformable Convolutional Networks



64

Topics
● Convolutional Neural Network

○ Basic building blocks
○ Popular CNN architectures

■ ResNet, MobileNet, ShuffleNet, SqueezeNet, DenseNet, EfficientNet, ConvNext, ShiftNet
○ CNN architectures for other vision tasks

■ Image Segmentation, Object Detection
● Recurrent Neural Network

○ Basic building blocks
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CNNs for Other Tasks: Image Segmentation
Fully Convolutional Networks

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings 
of the IEEE conference on computer vision and pattern recognition. 2015.

● A fully convolutional based DNN for 
image segmentation.

● Image segmentation is a computer vision technique used to divide an image into multiple 
segments or regions, each representing a different object, part of an object, or background. 

● The goal of image segmentation is to simplify or change the representation of an image into 
something more meaningful and easier to analyze.
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Image Segmentation
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CNNs for Other Tasks: Object Detection

● YOLO will generate the 
likelihood of each anchor point 
and the coordinates of its 
bounding box.

● Another branch will produce the 
category of each bounding box
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Transposed Convolution

Stride = 1 Stride = 2

● To upsample the input, we can apply transposed convolution.

https://hannibunny.github.io/mlbook/neuralnetworks/convolutionDemos.html
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Focal Loss
● A modified cross-entropy designed to perform 

better with class imbalance.
● Often used in the problem of object detection 

and image segmentation.
○ Down-weight easy examples and thus focus training 

on hard negatives

Lin, Tsung-Yi, et al. "Focal loss for dense object detection." Proceedings of the IEEE international conference on computer 
vision. 2017.

● γ controls the shape of the curve
● a controls the class imbalance and introduce 

weights to each class.
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CNNs for Other Tasks: Video Processing

● To process video, we can concatenate 
the consecutive frames together and 
use 2D convolution to process it.
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Presentations
● You Only Look Once: Unified, Real-Time Object Detection
● EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
● Focal Loss for Dense Object Detection
● TSM: Temporal Shift Module for Efficient Video Understanding

https://docs.google.com/presentation/d/1qtRc_wezU5wZmp6OCgENBMuuLfhg9a16QAt2-yGia5U/edit#slide=id.g32982341dd0_0_0
https://drive.google.com/file/d/17t3u1NI35oDrsCkHZAH15-kASNJ9cDUo/view?usp=sharing
https://docs.google.com/presentation/d/166tkVhrMJ5t2hJP8FiaTiVpPgker4bBwHg3MO6jTvps/edit?usp=sharing
https://docs.google.com/presentation/d/1k2wgc1DHzXIV5lx4C-6CyQpMOnqMpnVdqHq_qPXgCSA/edit?usp=sharing
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Topics
● Convolutional Neural Network

○ Basic building blocks
○ Popular CNN architectures

■ ResNet, MobileNet, ShuffleNet, SqueezeNet, DenseNet, EfficientNet, ConvNext, ShiftNet
○ CNN architectures for other vision tasks

■ Image Segmentation, Object Detection
● Recurrent Neural Network

○ Basic building blocks
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Recurrent Neural Networks (RNNs)
● Recurrent Neural Network (RNN) is a type of Neural Network where the output 

from the previous step is fed as input to the current step.
● RNN is widely used to process Sequential data

○ Text
○ Time series
○ Video

● The output corresponding to the current input is related to all the previous inputs 
and outputs.
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Recurrent Neural Networks (RNNs)

One-to-many
Image captioning

Many-to-one
Text classification

Many-to-many
Translation
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Recurrent Neural Networks (RNNs)

ht-1

ht

W1

xt W2

+

b1

ytW3 +

b2

● yt ,xt : output/input at timestep t
● ht : hidden state
● W1, W2, W3 : parameters
● b1, b2: biases
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Recurrent Neural Networks (RNNs)
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Problems of RNNs
● Vanishing Gradient:  It occurs when the gradients used to update the 

network's weights become exceedingly small, effectively preventing the 

network from learning long-range dependencies.

● Gradient Exploration:  gradients grow excessively large during training, 

leading to unstable updates. 

● To prevent this, gradient clipping is used to cap gradients at a predefined 

threshold, ensuring stable and effective training.


