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Notes

e Great job! All of you have made the selection.

e \WVe are going to release the reading list assignment by tonight!

e You can choose to send me the presentation, or we can present it using your
laptop.

e Please keep the time ~15-20 mins for Al paper, and ~30-35mins for Al
hardware paper.
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Recap

e DNN basics
o Multilayer perceptron

m Linear layer, activation function, softmax layer
Loss functions
Weights decay

Dropout
Optimizer

Learning rate scheduler
Weight Initialization

O 0O O 0O O O
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Topics

e Convolutional Neural Network
o Basic building blocks
o Popular CNN architectures
m ResNet, MobileNet, ShuffleNet, SqueezeNet, DenseNet, EfficientNet, ConvNext, ShiftNet
o CNN architectures for other vision tasks
m Image Segmentation, Object Detection
e Recurrent Neural Network
o Basic building blocks
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Convolutional Neural Networks

e Convolutional Neural Networks (CNNs) are a type of artificial neural network
designed for processing structured grid data, such as images. They're particularly
effective in tasks like image recognition, object detection and segmentation.

e The building blocks of a CNN includes: Classification  Classification o betection Instance

+ Localization

. Segmentation
o  Convolutional layer °9 i,

Activation layer
Normalization layer
Pooling layer
Softmax layer

O O O O

CAT, DOG, DUCK CAT, DOG, DUCK

PN e
b a

Single object Multiple objects
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Convolutional Neural Networks

e Convolutional Neural Networks (CNNs) are a type of artificial neural network
designed for processing structured grid data, such as images. They're particularly
effective in tasks like image recognition, object detection and segmentation.

e The building blocks of a CNN includes:
o  Convolutional layer

Activation layer

Normalization layer

Pooling layer
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Convolutional Layers: Terminology

Feature
map Kernel
C
Conv |:>
H
W
Input feature maps Filter Output feature map
Input activation Output activation

e Core building block of a CNN, it is also the most computational intensive layer.
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Convolutional Layers

—————————————————————————————————————————————————————————————————————

C i
=N Fo Be-l OO-EE
H |
; el
Input feature maps ~ Filter  Output feature map |

e Core building block of a CNN, it is also the most computational intensive layer.
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Convolutional Layers

Kernels

n Convolutional
Q *|:| = —
©
e g @ | featurel maps |
o 2 g
= > —
1 =il -
Q2 =
-— o ®
1 L
£
Step 1 Step 2
e Each kernel moves across the spatial e The information from each feature maps
dimensions of feature maps in the input are then aggregated by summing the

Convolutional feature maps together.

activations, analyzing the information _ _
e Abias may be introduced.

within those spatial dimensions.
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2D Convolution: An Example

Kernels

*D:

Input feature
map

NYU SAI LAB

Convolutional

feature map

Convolutional
feature map

Inner product
with filter 4

Inner product

1 0 5 Kernels
Input feature 110 -1 |4
3 |-1]-2 |*
map 0|2 3|-7
410 |-3
1 0 5 Inner product 0 S
31112 with filter -1 1|2
4 0 |-3 0 |-3
1 0 o Inner product 0 5
314 |- with filter 3 1|2
4 0 |-3 0 |-3

with filter -7
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Paddings

Kernel
0|3
2 | -2
3 | -1
Filter
0|3
2 | -2
3 | -1

Input feature 1193
map 3(-11-2
410 |-3
Input
Oj]0|O0OJO|O
Paddingof 1[0 [ 1 | 0 |mip O
O[3 [|-1]-2]0
0 ‘ 0(-3]|0
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Padding is used to
preserved the spatial size
of the output features.



Stride

padding = 0, stride = 1 padding = 0, stride = 2 padding = 1, stride = 2 padding = 1, stride = 1

NYU SAIl LAB| https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d =




Summary

Hout = (Hin_K+2P)/S+1
Hin and Hout are the spatial sizes of the input and convolutional feature maps.
K is the weight kernel size
P is the padding size
S is the stride
For example:
o Forinput size of 224x224x3, weight kernel size is 3x3, padding size is 1
and stride size is 1, then the output size is (224-3+2)/1 + 1 = 224.

Hin K Hout
Hin E 3 KD - Hout
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Computational Cost

w F Convolutional

K
H * K|:| = E feature maps
A

[ |

o - RNy N
[

~

Step 1 Step 2
e Each kernel moves across the spatial e The information from each feature maps
dimensions of feature maps in the input are then aggregated by summing the

Convolutional feature maps together.

activations, analyzing the information _ _
e Abias may be introduced.

within those spatial dimensions.

Computational cost in Multiply—accumulate operations (MAC): EXFoKx K% C

NYU SAI LAB
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Convolution

Filters
Input Feature .
maps C
- @7 _
H
w :
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Output Feature

:>E

maps

.
.
-




Convolution

Filters
Input Feature

maps )
CO/?V o
H \ |
w :
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Output Feature
maps
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Convolution
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Filters
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Output Feature
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Convolution

Filters

Inpur:;:zture c|.~‘ Output Feature @  Number of MACs: MxKxKxCxExF

c.” K|l - MeEs e Storage cost:
- Qo(‘\l K. 32x(MxCxKxK+CxHxW+MxExF)
H S
W %o X C: number of input channels
L

H,W: size of the input feature maps
M: number of weight filters

| K: weight kernel size

J E,F: size of the output feature maps
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Convolution

(B, C, W, H)
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Input Feature
maps
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Filters
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(B, M, E, F)
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Convolution

Input Feature
maps

(B, C, W, H)
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Filters

Output Feature
maps

(B, M, E, F)
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Convolution

(B, C, W, H)
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Input Feature
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Computational Cost: Standard Convolution

Input Feature Output Feature
maps maps

® Number of MACs: BXxMxKxKxCxExF

Filters

e Storage cost:
- 32x(MxCxKxK+BxCxHxW+BxMxE xF)

B: batch size

C: number of input channels

H,W: size of the input feature maps
M: number of weight filters

K: weight kernel size

E,F: size of the output feature maps

I—ﬂ.fl
J

(B’ C! W! H)
(B’ M’ E’ F)
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Receptive Field of CNN across Layers

Layer | Layeri + 1 Layeri+ 2
ojojo|o|o] yo0|0|O| OO olo|of|0]|oO
0[1]0]|5]0 0 [12]|20] 3| 0] t0.]24|-9 |12] 0
: o3 [-1]-=2]o0 0 |20]25]-10] 0 o |-19]14]1 | o
— 04 |0|-3|0 0|5|3|-7|]0] _+0]5[4]|7]0
Block 2 | _
’ Normalization 0 0 O O 0 - - ’O O 0 O O O O 0 O O

e Assume a kernel size of 3 by 3.
e Every elements at layer i is a function of the entire receptive fields of the previous layers.
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Activation Functions: ReLLU

e Rectifier linear operation (ReLU) applies an elementwise activation function to the

output feature maps.
e This leaves the size of the output feature maps unchanged.

o f(x)=xif x>0, f(x) =0 otherwise.

1101 5 11015
RelLU
3|1|2|——[3]01|0
410 |-3 41010
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Activation Functions: GeLU

GELU activation function

e (Gaussian error linear unit (GeLU):
GeLU (x) = z®(x) “-
®(z) = P(y<z), whereY ~ N(0,1) 2
0.5z(1 4 tanh[\/2/7(z + 0.044715z>)))

e GelLU is increasingly being adopted in |
transformers and CNNs today.

Output
(=]

-2 1

NYU SAI LAB Hendrycks, Dan, and Kevin Gimpel. "Gaussian error linear units (gelus)." arXiv preprint arXiv:1606.08415 (2016).
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Batch Normalization

Batch
Normalization =
as)

A
>

Y_-HW x B x C

e Batch Normalization (BatchNorm) is a technique used in deep learning to improve the training stability
and performance of neural networks.

NYU SAI LAB loffe, Sergey. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv

preprint arXiv:1502.03167 (2015). 26




Batch Normalization

X _
Batch Norm Y, = acc—“c +B. ForeachceC

o = {oc}, B={B3 = (e}, o = {0}

e For each channel c, we have:
o Xc: (HW x B)
o Mc and dc are the mean and standard deviation of Xc.
o dc and Bc are learnable parameters
O dc, PBe, U, Oc are scalers
e Overall, we have:
o M, 0,aandp all have a length of of C
o M, 0,aand are all fixed during the inference
o M, O are statistics based on the training dataset

27




Batch Normalization: During Inference

e Given all the parameters are fixed, for each channel ¢, we have:

Yc:ac +/Bc:—Xc+(,Bc— ) |::>YvC:pCXC+qC
c Oc s
Filters
Input Feature . Output feature
maps i maps
C .“ Conv ’_ ‘.0 B t h
—_— : —> —> atc —
: —
H | X Normalization Y'C pCXC 2 dc
— 1
W :

e pc can be merged into the CNN weights.
i e (c can be merged into the CNN bias.
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Batch Normalization

e For each channel ¢, we have:

Xc — M (%
Yc:ac—+/3c: _Xc+(;Bc_
c Oc

Filters
Input Feature
maps
c.”’ i
Conv
H o
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Qcllc

c

% P

% D2

% PN

) = Y =pXc+qc

We can fold in the p and g to
the weights and bias of
convolutional layer during
inference and reduce the online
computational cost.
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Poollng

Enhance the model invariance to spatial transformations such as translation and rotation, thereby

reducing the risk of overfitting.
e Reduce the spatial size of the representation and reduce the amount of parameters and

computation in the CNN.

LA
",1

Translation

Should produce the same prediction result

\ 11 5] 0| 2
Max 2x2
Rotation 3| 16| 2 pooling 5|6
f - 4121213 5|4
- Y
” ,’ 3|5/0]4
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Fully Connected Layers

e Neurons in a fully connected layer have full connections to all activations in the
previous layer, as seen in regular neural networks.

_____________________________

e Normally used in the last several layers to
generate the classification results.
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CNN Architecture for Image Classification Task

Input Feature Maps

- O
— —> T D e R
= P g(J ¥ 1 i

112 56

224

224

e Forimage classification task, during the forward propagation of CNN, the spatial
size reduces while the number of channels increases.

NYU SAI LAB i




Topics

e Convolutional Neural Network
o Basic building blocks
o Popular CNN architectures
m ResNet, MobileNet, ShuffleNet, SqueezeNet, DenseNet, EfficientNet, ConvNext, ShiftNet
o CNN architectures for other vision tasks
m Image Segmentation, Object Detection
e Recurrent Neural Network
o Basic building blocks
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5 input, D-dim
;; A \ 4
75’ weight layer 3x3, D-dim
2. T relu
éﬂl S56-layer ( ) > f: | X v Conv 1x1
E " ke identity | 3x3, D-dim

20-layer

" iter. (led ).

e When deeper networks are able to start converging, a degradation problem has been exposed: with the
network depth increasing, accuracy gets saturated and then degrades rapidly.

e By introducing the residual link, we reduce the complexity of the learning process by ensuring that the
performance is at least as good as the shallower DNN.

NYU SAI LAB He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision

34
and pattern recognition. 2016.




‘plain-18 ResNet-18

=—plain-34 = ResNet-34 34-layer
2GO 10 20 30 40 50 2('0 10 20 30 40 50
iter. (led) iter. (led)

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

NYU S AI L AB He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision 35
and pattern recognition. 2016.




ResNet Performance

Performance on ImageNet

Performance on CIFAR-10

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

NYU SAI LAB

method error (%)

Maxout [10] 9.38

NIN [25] 8.81

DSN [24] 8.22

# layers | # params

FitNet [35] 19 2.5M 8.39
Highway (42, 43] 19 2.3M 7.54 (7.7240.16)

Highway [42, 43] 32 1.25M | 8.80

ResNet 20 0.27M | 8.75

ResNet 32 0.46M | 7.51

ResNet 44 0.66M | 7.17

ResNet 56 0.85M | 6.97
ResNet 110 1.7M 6.43 (6.61+0.16)

ResNet 1202 194M | 7.93
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MobileNet

Depthwise Separable Convolutlon

_________________________________________

%

Depthwise
i Conv
______ Standard Convolution - C _
| Convolution ! H K
! c i ! K
i ,_T | | W
» H K - Pointwise
K Conv
! W ! !

_________________________________________

NYU SAI LAB Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications."

arXiv:1704.04861 (2017).

______

arXiv preprint
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MobileNet

Kernels

*KD:
K

*

Feature maps

*
[]
I

Convolutional
feature maps

Step 1 Depthwise Convolution

e Each kernel moves across the spatial
dimensions of feature maps in the input
activations, analyzing the information
within those spatial dimensions.

NYU SAI LAB

1
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Step 2 Pointwise Convolution

The information from each feature maps
are then aggregated by multiplying with
the weight in the pointwise conv kernel
and summing the Convolutional feature
maps together.

A bias may be introduced.
38



Standard Convolution

Input Feature
maps

.
-
.

NYU SAI LAB

Filters

Output Feature e Number of MACs: MxKxKxCxExF
maps

e Storage cost:
32X (MxCxKxK+CxHxW+MxExF)

C: number of input channels

H,W: size of the input feature maps
M: number of weight filters

K: weight kernel size

E,F: size of the output feature maps

39



Depthwise Separable Convolution

Pointwise
Input Feature Depthwise Fllterslj - Output Feature
maps Filters o e c.- maps
.0 . . 0
C. Degthmse c. C. ° o7 4 @
H — = 1. L]
E
" R _ ¥
o’. D

e Number of MACs: KxKxCxExF + MxCxExF
e Storage cost: 32X (CxHXW+CxKxK+CxExXF+MxC+MxEXF)

NYU SAI LAB
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Why Depthwise Conv is Cheaper?

e Number of MACs for depthwise separable Conv: KxKxXCXEXF + MxCxEXxF
e Number of MACs for standard Conv: MxKxKxCxExF
e When M is large the computational saving is about KxK (9) times.

e \With a batch size of B, number of MACs are:
e Number of MACs: BXKxKXCXEXF + BxMxCxExF
e Storage cost: 32X (BXCxHXW+CxKxK+BxCXExF+MxC+BxMxEXF)

NYU SAI LAB .




MobileNet-V2

conv 1x1, Relu6

Add I

conv 1x1, Linear

1

1

1

conv 1x1, Linear I

t

Dwise 3x3,
stride=s, Relu6

Dwise 3x3,
stride=2, Relu6

Dwise 3x3, Relub

!

1

Cinput)

MobileNetV1

Conv 1x1, Relud

Conv 1x1, Relué

C 4“;;[);!;» B
Stride=1 block

MobileNetV2

C input D

Stride=2 block

Add residual link between the
blocks.
Adopt ReLUG replace ReLU.

NYU SAI LAB Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." Proceedings of the IEEE conference on

computer vision and pattern recognition. 2018.
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Group Convolution

e The original MAC: EXFXKxKxCxM

NYU SAI LAB

Conv

'lII>E
K

Q
%

sy

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural

networks." Communications of the ACM 60.6 (2017): 84-90.
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Group Convolution

C C 1
' \ Conv '__| —>E Conv
H — H —

NYU SAI LAB

Group size = 2
Each group of feature maps within the input only convolved with partial weight kernels.
This will lead to a large saving on memory consumption and computational cost.
The number of MAC: ExXFxKxKxCxM/G

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural networks."
Communications of the ACM 60.6 (2017): 84-90.
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ShufileNet

=
=3

Conv  — = N |:>- e The shuffle operation is used to
exchange the information across
the groups.

0 : :
Conv @ e The shuffle operation with group
> j = = S = convolution can replace the
) conventional full-channel
1 convolution without noticeable
Conv _] - - NEES accuracy degradation.

NYU SAI LAB

Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." Proceedings of
the IEEE conference on computer vision and pattern recognition. 2018. 45



ShufileNet

BN Rel _ BN Rel
l BN ReLU ¥ BN ReLU ¥ BN Relu
Channel Shuffle L 2 Channel Shutfie
‘ 3x3 AVG Pool
3x3 DWConv v (stride = 2) : 330+
< X WConv
BN ReLU S DWCony (stride = 2)
; BN I BN
1x1 Conv 1x1 GConv 1x1 GConv
\ / BN \ /" BN \ / BN
Add Add Concat
{ ReLU ' ¢ RelU RelU
(a) (b) (c)

U Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." Proceedings of
NY SAI LAB the IEEE conference on computer vision and pattern recognition. 2018.




ShufileNet

Model Cls err. (%, no shuffle) | Cls err. (%, shuffle) | A err. (%)
ShuffleNet 1x (g = 3) 34.5 32.6 1.9
ShuffleNet 1x (g = 8) 37.6 324 5.2
ShuffleNet 0.5x (g = 3) 45.7 43.2 2.9
ShuffleNet 0.5x (g = 8) 48.1 42.3 5.8
ShuffleNet 0.25x (g = 3) 56.3 55.0 1.3
ShuffleNet 0.25x (g = 8) 56.5 52.7 3.8

Table 3. ShuffleNet with/without channel shuffle (smaller number represents better performance)

e G isthe group size, ax is the scaling factor on number of channels.
e Shuffling operation can greatly improve the accuracy.
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ShufileNet

NYU SAI LAB

Model

| Complexity (MFLOPs) | Cls err. (%) | A err. (%)

1.0 MobileNet-224 569 294 -
ShuffleNet 2x (g = 3) 524 26.3 L |
ShuffleNet 2x (with SE[13], g = 3) 327 24.7 4.7
0.75 MobileNet-224 325 31.6 -
ShuffleNet 1.5x (g = 3) 292 28.5 C |
0.5 MobileNet-224 149 36.3 -
ShuffleNet 1 x (g = 8) 140 324 39
0.25 MobileNet-224 41 494 -
ShuffleNet 0.5x (g = 4) 38 41.6 7.8
ShuffleNet 0.5 x (shallow, g = 3) 40 42.8 6.6

Table 5. ShuffleNet vs. MobileNet [ ! 7] on ImageNet Classification
Under the same level of computational complexity, shufflenet is better than

MobileNet.
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SqueezeNet

”,,))) IO YD YD
Yy | O |\ | YD YD YD YD
YD YD YN YD

NYU SAI LAB

1x1 convolution filters

1x1 and 3x3 convolution filters

ReLU ;

Achieves great accuracy with 50x smaller
parameters than other baselines (4.8MB).
Some strategies:

o Replace 3x3 filters with 1x1 filters.

o Decrease the number of input channels to
3x3 filters.

o Downsample late in the network so that
convolution layers have large activation
maps.

Aims to reduce the CNN parameter size, not
computational cost.

landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size." arXiv

preprint arXiv:1602.07360 (2016).



SqueezeNet

maxpool/2

256

maxppol/2
256
384
384
512 .
maxpool/2 51

512
maxpool/2 maxpool/2
512 o -
1000 1000 or
global avgpool

lobal |
"labrador s b ey global avgpool
retriever
dog"

U L landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size." arXiv
NY SAI AB preprint arXiv:1602.07360 (2016).




SqueezeNet

CNN architecture Compression Approach Data Original — Reduction in Top-1 Top-5
Type Compressed Model Model Size ImageNet ImageNet
Size vs. AlexNet Accuracy Accuracy
AlexNet None (baseline) 32 bit 240MB Ix 57.2% 80.3%
AlexNet SVD (Denton et al., 32 bit 240MB — 48MB ) 4 56.0% 79.4%
2014)
AlexNet Network Pruning (Han 32 bit 240MB — 27MB 9x 57.2% 80.3%
et al., 2015b)
AlexNet Deep 5-8 bit 240MB — 6.9MB 35x 57.2% 80.3%
Compression (Han
et al., 2015a)
SqueezeNet (ours) None 32 bit 4.8MB 50x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 8 bit 4.8MB — 0.66MB 363x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 6 bit 4.8MB — 0.47MB 510x 57.5% 80.3%

Achieve a comparable performance as AlexNet, but still suboptimal compare against other

architectures.

ResNet 50: 100MB, Vision Transformer base> 300MB.

NYU SAI LAB

landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size." arXiv
preprint arXiv:1602.07360 (2016).
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DenseNet

NYU SAI LAB

e ResNet:
Xg = Hp(xp-1) + X1
e DeseNet:

xp = Hip([xg,%1 cowsXpsi])

e H(.) is the function of batch
normalization, followed by ReLU and 3x3
Convolution.

Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision 52
and pattern recognition. 2017.



DenseNet

NYU SAI LAB

Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision

and pattern recognition. 2017.

Weight

<

filters

,
=

—_—>

1eouo0)
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DenseNet

275 I X Y 275 X X Y
—a&— ResNets 3 —&— ResNets
ResNet-34 —a&— DenseNets-BC ResNet-34 —a— DenseNets-BC
265} 26.5}
& 255} & 255} ]
@ bl DenseNet-121
c c
_g 24_5 L . x g 245 b 3 4
g ResNet-50 ’8 ResNet-50
g 2354 g 23.5¢
ResNet-101 DenseNet-2 ResNet-101
25 kg 1R e 225} ResNet-152)
esNet-153
DenseNet-161(k=48) DenseNet-161(k=48)
21 -5 " A A " A A 21.8 A ks " A A A A
0 1 2 3 4 5 6 7 7,8 5 0.75 1 1.25 15 1.75 2 225 25§
#parameters x 10 #FLOPs x 10"

NYU S AI L AB Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision 54
and pattern recognition. 2017.




EfficientNet

#channels

F ... layer_i

B} resolution HXW

(a) baseline

(b) width scaling

deeper

(c) depth scaling

"+~ higher
i __resolution

(d) resolution scaling

deeper

--y--higher
.x..resolution

(e) compound scaling

e |tis critical to balance all dimensions of network width/depth/resolution, and surprisingly such balance
can be achieved by simply scaling each of them with constant ratio.

NYU 8 I L B Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International
A A conference on machine learning. PMLR, 2019.
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EfficientNet

SiLU()
244 EfficientNet-B6
6 k= AmoebalNet-C
— o ———
AmeobaNet-A _ = = === L
,I e ®
a " - NASNet-A  __..="" SENet
E . 824 St TRRTRREIAT g
S 5
B‘ /, ------ .
24 @ ST e ResNeXt-101
3 204 i o
8 0 ~»7 _.-"" Inception-ResNet-v2
= << »7 . .
2 oA - r,’ .-®Xception
3 &
S | IS eResNet-152
= I Topl Acc. FLOPS
-2 s BO" DenseNet-201 ResNet-152 (Xie etal., 2017) 77.8% 11B
> - EfficientNet-B1 79.1% 0.7B
g 76 N ResNeXt-101 (Xie etal, 2017) 80.9% 328
= I' © ResNet-50 EfficientNet-B3 81.6% 1.8B
—4 L SENet (Hu et al., 2018) 827% o8
Ie . NASNet-A (Zoph et al., 2018) 80.7% 24B
" Inception-v2 EfficientNet-B4 82.9% 42B
6 J 744 AmeobaNet-C (Cubuk et al., 2019) 83.5% 41B
6 NASNet-A EfficientNet-BS 83.6%  9.9B
T T T T T T T ResNet-34
—6 -4 -2 0 2 4 6 0 5 10 15 20 25 30 35 40 45

FLOPS (Billions)
e SiLU is used in the EfficientNet architecture.
e SiLU(x) = x*xo(x)

NYU 8 I L B Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International
A A conference on machine learning. PMLR, 2019.




ConvNext

Liu, Zhuang, et al. "A convnet for the 2020s." Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition. 2022.

224

ResNet Block ConvNeXt Block e Leverage the insight of vision transformer to enhance the
performance of CNN.
256-d 96-d Some major changes to change ResNet 50 to ConvNext 50:
( M" o) ( d7x‘7' % ) o  Change number of blocks in each stage from (3, 4, 6, 3)
' ' in ResNet-50 to (3, 3, 9, 3).
e i o Use depthwise separable convolution
[ 3x3, 64 J [ 1x1, 384 ] o Large convolutional kernel.
N Aol -y o Replacing ReLU with GELU
v \4 O Substituting BN with LN.
[ 1x1, 256 ] [ 1x1, 96 ] Input Feature Maps
VBN ¥ % [] -
W S
’\rReLu '\r § = = g I:>$ * = = = 169 (19@
3 3 12 56 1
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ShiftNet

NYU SAI LAB

Pointwise
Convolution "
c N
|
Input Shifted Pointwise Pointwise
Data Permutations Input Data Convolution Convolution
Filters Results
Shift (Single Channel) e Completely remove the computation for the
: e depthwise convolution.
832 H g2 e The shift positions are predefined for each
8 6 7
Input Shift (Right) Shifted channel.
Data Input Data

Wou, Bichen, et al. "Shift: A zero flop, zero parameter alternative to spatial convolutions." Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018.
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ShiftNet

NYU SAI LAB

Shift Left
No Shift
:> Zeros
Shift Down

.

Wu, Bichen, et al. "Shift: A zero flop, zero parameter alternative to spatial convolutions." Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018.




ShiftNet

(=2} =1 oo
o (e} o

Accuracy (Top 1 CIFAR100)

o)
[e=]

ACCURACY VS PARAMETERS TRADEOFF

—a— ShiftResNet20
—m— ShiftResNet56
—e— ShiftResNet110

o i
Y o

ResNet20
ResNet56
ResNet110

|

0.5 1 1.5
Parameters (Millions)
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(=2} ~J o}
o= [} (=

Accuracy (Top 1 CIFAR100)

()
=

ACCURACY VS FLOPS TRADEOFF

—a— ShiftResNet20
—m— ShiftResNet56

—ea— ShiftResNet110 ||
-+-  ResNet20
-4~ ResNet56
-m- ResNetll10

50 100 150 200
FLOPs (Millions)

|
250

300
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Deformable Convolutional Networks

e Convolutional neural networks (CNNSs)
are inherently limited to model geometric

transformations due to the fixed : : : ol e R T
geometric structures in their building RIC 184
modules. ¢

e This paper proposed the “learnable
weight kernel shape”.

w = {(—1, —1), (—1,0), . (Oa 1)» (1’ 1)} }’(p()) — Z W(pn) ' X(p() + pn)a
PLER

Dai, Jifeng, et al. "Deformable convolutional networks." Proceedings of the IEEE international conference on computer

NYU SAl LAB| vision. 2017,




Deformable Convolutional Networks

y(Po) = > w(pn)-x(po+ Pn);

PrER

y(Po) = Y w(pn) - X(Po+ Pn + APy)

Can be fractional

x(p) =Y _G(a,p) - x(q),

input feature map output feature map

Dai, Jifeng, et al. "Deformable convolutional networks." Proceedings of the IEEE international conference on computer

NYU SAl LAB| vision. 2017,




Deformable Convolutional Networks

usage of deformable DeepLab class-aware RPN Faster R-CNN R-FCN
convolution (# layers) mloU@V (%) | mIoU@C (%) | mAP@0.5 (%) | mAP@0.7 (%) | mAP@0.5 (%) | mAP@0.7 (%) | mAP@0.5 (%) | mAP@0.7 (%)
none (0, baseline) 69.7 70.4 68.0 449 78.1 62.1 80.0 61.8
res5c (1) 73.9 735 73.5 54.4 78.6 63.8 80.6 63.0
res5b,c (2) 74.8 74.4 74.3 56.3 78.5 63.3 81.0 63.8
res5a,b,c (3, default) 75.2 75.2 74.5 572 78.6 63.3 81.4 64.7
res5 & res4b22,b21,b20 (6) 74.8 75.1 74.6 57.7 78.7 64.0 81.5 65.4

Table 1: Results of using deformable convolution in the last 1, 2. 3. and 6 convolutional layers (of 3 x 3 filter) in ResNet-101
feature extraction network. For class-aware RPN, Faster R-CNN, and R-FCN, we report result on VOC 2007 test.

NYU SAI LAB
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Topics

e Convolutional Neural Network
o Basic building blocks
o Popular CNN architectures
m ResNet, MobileNet, ShuffleNet, SqueezeNet, DenseNet, EfficientNet, ConvNext, ShiftNet
o CNN architectures for other vision tasks
m Image Segmentation, Object Detection
e Recurrent Neural Network
o Basic building blocks

NYU SAI LAB -




CNNs for Other Tasks: Image Segmentation

Fully Convolutional Networks

forward/inference

backward/learning

e A fully convolutional based DNN for
image segmentation.

e Image segmentation is a computer vision technique used to divide an image into multiple
segments or regions, each representing a different object, part of an object, or background.
e The goal of image segmentation is to simplify or change the representation of an image into

something more meaningful and easier to analyze.

NYU ‘8 l L B Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings
A A of the IEEE conference on computer vision and pattern recognition. 2015.

65



Image Segmentation

P 0.6 sheep
P 0.3 dog
P 0.1 cat
P 0.0 horse

-

Image Recognition Semantic Segmentation

Object Detection Instance Segmentation

NYU SAI LAB




CNNs s for Other Tasks: Object Detection

56|
i -
W2
e—— “,, 7| “] 7
3
36 =, A
7 7
756 () 024

XHX'@ e YOLO will generate the

w2

(A) Input image

(B) YOLO Algorithm result

= likelihood of each anchor point
and the coordinates of its
bounding box.

e Another branch will produce the
category of each bounding box
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Transposed Convolution

e To upsample the input, we can apply transposed convolution.

Stride = 1 Stride = 2

NYU SAI LAB https://hannibunny.github.io/mlbook/neuralnetworks/convolutionDemos.html
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Focal Loss

5 e A modified cross-entropy designed to perform
CE(p) = —log(p) =il better with class imbalance.
4 FL(p) = —(1 — p)” log(p,) z:?.s ° Oftep used in the prot?lem of object detection
— =§ and image segmentation.
—

3t O  Down-weight easy examples and thus focus training

§ on hard negatives
gl |
g FL(p) = —a(1 — p,)” log(p,)
1r —~ @ VY controls the shape of the curve
e e a controls the class imbalance and introduce
N e e

0 0.2 0.4 0.6 e ; weights to each class.
probability of ground truth class

NYU 8 AI L AB Lin, Tsung-Yi, et al. "Focal loss for dense object detection." Proceedings of the IEEE international conference on computer g
vision. 2017.




CNNs for Other Tasks: Video Processing

' {

"
o

NYU SAI LAB

To process video, we can concatenate
the consecutive frames together and
use 2D convolution to process it.
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Presentations

You Only Look Once: Unified, Real-Time Object Detection
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Focal Loss for Dense Object Detection
TSM: Temporal Shift Module for Efficient Video Understanding

NYU SAI LAB
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https://docs.google.com/presentation/d/1qtRc_wezU5wZmp6OCgENBMuuLfhg9a16QAt2-yGia5U/edit#slide=id.g32982341dd0_0_0
https://drive.google.com/file/d/17t3u1NI35oDrsCkHZAH15-kASNJ9cDUo/view?usp=sharing
https://docs.google.com/presentation/d/166tkVhrMJ5t2hJP8FiaTiVpPgker4bBwHg3MO6jTvps/edit?usp=sharing
https://docs.google.com/presentation/d/1k2wgc1DHzXIV5lx4C-6CyQpMOnqMpnVdqHq_qPXgCSA/edit?usp=sharing

Topics

e Convolutional Neural Network
o Basic building blocks
o Popular CNN architectures
m ResNet, MobileNet, ShuffleNet, SqueezeNet, DenseNet, EfficientNet, ConvNext, ShiftNet
o CNN architectures for other vision tasks
m Image Segmentation, Object Detection
e Recurrent Neural Network
o Basic building blocks

NYU SAI LAB .




Recurrent Neural Networks (RNNSs)

e Recurrent Neural Network (RNN) is a type of Neural Network where the output
from the previous step is fed as input to the current step.
e RNN is widely used to process Sequential data

o Text
o Time series
o Video

e The output corresponding to the current input is related to all the previous inputs

and outputs.
@ ®@ 0 ®

IW Unfold ]W IW [W
v *—V.[ hml [—V.[ htl ]—V»[ ht,; J‘\T

NYU SAI LAB X ®d O O .




Recurrent Neural Networks (RNNs)

Multiple Outputs

Single Input

Image captioning

NYU SAI LAB

One to Many

HH

One-to-many

Many to One

T
1T

Many-to-one

Single Output

Multiple Inputs

Text classification

Many to Many
Multiple Inputs . ' .
\ J

Mény-to-many
Translation

-~

Multiple Outputs




Recurrent Neural Networks (RNNSs)

e Yt Xt: output/input at timestep t

hty = fi(Wihi—1 + Wazy + by) o ht: hidden state

— h b o Wi, W2, W3: parameters
Yt f?‘(W?’ t T 2) e b1, b2: biases

b1 b2

ht1——1 W1 46‘) W3 —(%)—»yt

xt—— W2 ht

NYU SAI LAB




Recurrent Neural Networks (RNNSs)

y1 y2 y3
T T T
= W3 = W3 = W3
] |
ho L= @ h1 = @ ha L= @ h3
W2 W2 W2
|
x|1 x|2 X3
dL dL dL dhs dL dhs dhs

W dhs 22 dh; dhe "2 T dhs dhg dhy ot

NYU SAl LAB Backpropagation Through Time (BPTT)




Problems of RNNs

e Vanishing Gradient: It occurs when the gradients used to update the
network's weights become exceedingly small, effectively preventing the
network from learning long-range dependencies.

e Gradient Exploration: gradients grow excessively large during training,
leading to unstable updates.

e To prevent this, gradient clipping is used to cap gradients at a predefined

threshold, ensuring stable and effective training.

NYU SAI LAB .




