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Recap
● Why pruning?

○ Running cost of CNNs and Transformers
● Sparse matrix encoding
● General pruning techniques
● Transformer pruning
● Large model pruning
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Fixed-Point Arithmetic (INT)

● Hyperparameter associated with the fixed-point format:
○ Clipping range (-L, L): usually symmetrical around 0
○ Bitwidth (b)

● Quantization with Fixed-point format is called Fixed point quantization or 
INT quantization.

3
4-bit Fixed 

Point (INT4)

2 0
Fixed Point Formats

e=0, m=3

7 6 0

e=0, m=7

8-bit Fixed 
Point (INT8)
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Fixed-Point Format (Symmetrical)
● How to convert a number x to INT representation?

○ Set the clipping range: (-L, L), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the INT representation:
○ Rescale: 

 ● Have a uniform representation power within the clipping range.
● All the computations can be performed using 

0 L-L 0 L-L

With s=2L/(2b-2), zero can be represented using quantized number
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Example
● X = [1.1, 2.4, -0.3, 0.8],  bitwidth = 3, L = 2

● How to convert a number x to INT representation?
○ Set the clipping range: (-L, L), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the INT representation:
○ Rescale: 

s = 4/6 = 2/3  
xc = [1.1, 2, -0.3, 0.8]

xint = [2, 3, 0, 1]
Xq = [1.33, 2.0, 0.0, 0.67]

b=3, L=2  
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Computation with Fixed-Point Format
● Addition/Subtraction: 
● Multiplication:
● Division: 

If the scales are the same

Fixed-point adder

Fixed-point multiplier
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Computation with Fixed-Point Format
● If we try to compute the dot product between X and Y:

All elements within the tensors are quantized using the 
same scale✖Xq,1 Xq,2

yq,2

yq,1

X, Y 

quantized

Xint, Yint 

IN
T M

A
C

quantized

Zint Z X, Y 

FP M
A

C

Z 
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Computation with Fixed-Point Format

0 1-11-1 Binary quantization Ternary quantization

● Binary and Ternary neural networks are both multiplication-free DNN.
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Fixed Point Format (Unsymmetrical)
● How to convert a number to INT8 representation?

○ Set the clipping range: (Lmin, Lmax), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the fixed-point representation:

○ Rescale:

1

LmaxLmin
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Example
● X = [1.1, 2.4, -0.3, 0.8],  bitwidth = 3, L = 2

s = 0.357  
b=3, Lmax=2, Lmin=-0.5   

● How to convert a number to INT8 representation?
○ Set the clipping range: (Lmin, Lmax), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the fixed-point representation:

○ Rescale:

1
Xc = [1.1, 2, -0.3, 0.8]

Xint = [4,7,1,4]
Xq = [0.93, 2.0, -0.14, 0.93]
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Computation with Fixed-Point Format

● Addition/Subtraction: 

● Multiplication (needs additional computation):

● Division: hard to implement
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Floating-Point Arithmetic

31
IEEE 754 

32-bit (FP32)

30 22 0 15 14 9 0

e=5, m=10e=8, m=23

IEEE 754 
16-bit (FP16)

Sign field Exponent (e) Mantissa (m)

● The floating-point number has three fields:
○ Sign (s)
○ Exponent (e)
○ Mantissa (m)
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Floating-Point Arithmetic

Overton, Michael L. "Floating point representation." Unpublished note (1996).

● Every real number can be converted in the following format:

● For example:
○ 5.5 = (-1)0 

✕ 2129-127 
✕ (1.011)2 

○ -71 = (-1)1 
✕ 2133-127 

✕ (1.000111)2 
○ 0.34375 = (-1)1 

✕ 2125-127 
✕ (1.011)2 

m There typically exists a predefined 
bias: bias = 127 for IEEE 754 FP32.

s = 0, e = 10000001, m = 0110000…0
s = 1, e = 10000101, m = 0001110…0
s = 1, e = 01111101, m = 0110000…0
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Floating-Point Arithmetic

● IEEE-754 standard: 

● The exponent field is unsigned.
● We need some special representation:

○ A bit stream of all zeros represents 0

m



17

Floating Point Arithmetic

● Have better representation power for values with small magnitudes.
● How to convert a real number x to FP representation?

x = |x|   s = sign(x)



18

Example

x = -13.24, bias=127 

x = |x|   s = sign(x)

a = 3, e = 130, m = 0.655 

s = (0)2, e = (10000010)2, m = (10100111101011100001000)2  
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Computation with FP Representation
● Addition/Subtraction: 

○ Need to align the exponent
011010 + 001111 = 011010 + 011001 = 011011
s1e1 m1 Alignment

● Multiplication/Subtraction: 
○ Sum the exponent, multiply the mantissa

011010    001111✖

s2 e2 m2

s1e1 m1 s2 e2 m2

e =e1+e2

m =1.m1 x 1.m2

● Addition and subtraction is expensive for FP.
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Customized FP Representation

bfloat16 TensorFloat

15 14 9 0

15 14 6 0 18 17 9 0

e=8, m=10e=8, m=7

e=5, m=10

IEEE 754 
16-bit (FP16)

HFP8
7 2 0

e=4, m=3

6 7 1 06

e=5, m=2

● Numerous customized FP representations have been developed to 
facilitate DNN execution.
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Block Floating Point (BFP)
6 5 0

g=4, e=4, m=6

4 3 0
3 0

g=2, e=4, m=4

3 0

● BFP formats offer a middle ground between FP and INT formats, by enforcing that a group of 
values share a common exponent while maintaining individual mantissas.

3 2 0

7 0

g=16, e=8, m=3

MSFP-12

Sign field Exponent (e) Mantissa (m)
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Block-Floating Arithmetics (BFP)

● Block floating point (BFP) is a numerical representation method that applies a shared exponent 
to a block of fixed-point values, balancing precision and dynamic range while reducing 
computational complexity compared to full floating-point arithmetic.

● There is no “leading 1”.

m = (b0.b1b2b3...b22)2

BFPFP

110 0 11

1110 01 0010 11

1100 11

0010
11

0 110 Sign
Group exponent
Mantissa



23

Block-Floating Arithmetics (BFP)

● Inner-group operations are performed using fixed-point arithmetic.
● Cross-group operations are performed using floating-point arithmetic.
● Each group exponent also includes a bias, which is shared across all the groups.

m = (b0.b1b2b3...b22)2

BFPFP

110 0 11

1110 01 0010 11

1100 11

0010
11

0 110 Sign
Group exponent
Mantissa
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Example

5.5
2.625
-3.125
2.75

Find the 
max value

5.5

Find the 
group 

exponential (1.375×22)
2

Converting to 
Binary

(-1)0×22×(1.0110)2 
(-1)0×21×(1.0101)2 
(-1)1×21×(1.1001)2 
(-1)0×21×(1.0110)2 

BFP
Representation

(-1)0×22×(1.0110)2 
(-1)0×22×(0.1010)2 
(-1)1×22×(0.1100)2 
(-1)0×22×(0.1011)2 

10

0
0
1
0

10110
01010
01100
01011

Shift on 
significands

Assume the bias is 0
Sign
Group exponent
Mantissa
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Logarithm Arithmetics
● A specialized form of integer (INT) quantization
● Utilizes only power-of-two integer values, making hardware multiplication 

more efficient and cost-effective.

0 1 2 3 4 5 6 7 8-1-2-3-4-5-6-7-8

1 2 4 8-1-2-4-8

● Each INT number can be 
represented by its exponent value.

● A total of 8 numbers, 3 bits are 
needed to encode the bits.

11 10 01 001 1 1 1 11100100 0000

a = (1100)2 a✖2 = (11000)2 a✖8 = (1100000)2
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Topics
● Basic Data Formats

○ Fixed point (INT)
○ Floating point (FP)
○ Block floating point (BFP)

● Quantization methods
○ Taxonomy of Quantization
○ Learnable adaptive quantization scheme
○ Quantization for LLM
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Taxonomy of Quantization
● Quantization techniques can be classified from different perspectives:

○ Weight quantization, activation quantization
○ Quantization aware training, post training quantization
○ Tensor-based quantization, vector-based quantization, group-based quantization
○ Quantization for inference/training
○ Deterministic quantization, stochastic quantization
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Weight Quantization

Weight distribution in ResNet

● The weight distribution follows a 
gaussian-like distribution.

● The outlier will lead to large quantization 
error.

● A good selection on the clip range L is 
critical for accuracy performance.

L L

-m m
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Weight Quantization

● Large truncation error
● Low quantization error for small values

L L L L

-m m

● Small truncation error
● Large quantization error for small values

● L = 0.9×max(|W|), L = 0.95×max(|W|)
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Activation Quantization
● Quantization on activation needs to be performed dynamically. This will introduce 

additional compute overhead.
● Also the activation will pass the nonlinear functions, dequantization is required.

INT
Conv

FP2
INT

INT2
FP

Batch
Norm

ReLU INT
Conv

FP2
INT …

Layer l
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Activation Quantization

(577✕1024)✕
(1024✕1024)

MatMul
Dequantize

Cal_scale
QuantOn 4090 GPU

Projection Layer:
Input: 577x1024

Weight: 4096x1024

● For low-precision quantization, the quantization process may cause more computation 
than the computational savings achieved by using low-precision quantization.
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Taxonomy of Quantization
● Quantization techniques can be classified from different perspectives

○ Weight quantization, activation quantization
○ Post training quantization, quantization aware training
○ Tensor-based quantization, vector-based quantization, group-based quantization
○ Quantization for inference/training
○ Deterministic quantization, stochastic quantization
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When to Quantize?
Post-training quantization (PTQ)

Train with full 
precision

Quantize the 
weights

Quantization-aware Training (QAT)

● PTQ has lower computational cost, but accuracy is also lower.
● For the model which is expensive to train (LLM), PTQ is applied to facilitate their 

implementations.

Quantize the 
weight/activation

Resultant model

Until 
convergence

Train the 
current model
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How to compute           ?

Another Way to Look at Quantization

W

A

✖ Y Z
✖

Q

Original flow Flow with quantization

W’W

A

Y Z
ReLU

ReLU

Y = WA, Z = ReLU(Y)
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Straight Through Estimator (STE)
● Staircase function has a derivative of 0 at most of the 

values. This will makes the DNN not trainable.
● We instead use STE to estimate the gradient of a 

non-differentiable quantized function in the backward 
pass.

● During the forward pass, apply quantization, 
for backprop, ignore it.

Li, Hao, et al. "Training quantized nets: A deeper understanding." Advances in Neural Information Processing Systems 
30 (2017).
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Straight Through Estimator (STE)

✖

Q

Forward pass

W’W

A
Y ZReLU

Q
✖

W

A
Y ZReLU

Backward pass

● During the forward pass, apply quantization, for backprop, ignore it.
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Other Ways to Approximate Quantization

Liu, Zechun, et al. "Bi-real net: Binarizing deep network towards real-network performance." International Journal of 
Computer Vision 128 (2020): 202-219.
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Pytorch Implementation of Quantization
    def forward(self, x):

        y = F.conv2d(self.w, x)

        return y

    def forward(self, x, b, L):

        self.quantized_w = Q(self.w, b, L)

y = F.conv2d(self.quantized_w, x)

        return y
def Q(w, b, L):

   L = 0.9 * w.abs().max()

   w = torch.clip(w, min=-L, max=L)

   scale = 2L/(2**b-2)  

   wq = (w/scale).round() * scale

   return wq
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Taxonomy of Quantization
● Quantization techniques can be classified from different perspectives

○ Weight quantization, activation quantization
○ Post training quantization, quantization aware training
○ Tensor-based quantization, vector-based quantization, group-based quantization
○ Quantization for inference/training
○ Deterministic quantization, stochastic quantization
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Granularity of Quantization
● The weight can be quantized with different granularity:

○ Tensor-based quantization
○ Vector-based quantization
○ Group-based quantization

● A higher quantization granularity will lead to a lower quantization error and a 
higher hardware implementation cost.

Tensor-based 
quantization

Vector-based
quantization

Group-based
quantization
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Taxonomy of Quantization
● Quantization techniques can be classified from different perspectives

○ Weight quantization, activation quantization
○ Post training quantization, quantization aware training
○ Tensor-based quantization, vector-based quantization, group-based quantization
○ Quantization for inference/training
○ Deterministic quantization, stochastic quantization
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Quantization During Training

● The forward propagation is very similar to the inference operation, where the input X is 
multiplied by weight W, generating the output Y.

X Y=W

X: input W: weight filters Y: output
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Quantization During Training

  XWT
  Y =

X: input W: weight filters Y: output
X: input gradient W: weight gradient Y: output gradient

XT =  Y    W

Weight gradient 
Computation

Data gradient 
Computation
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Quantization During Training

  X

WT

  Y XT    W

Weight Gradient 
Computation

 Data Gradient 
Computation

Q
(.)

Q(   Y)

Q(WT)

Q(.)

Q
(.)

Q(XT)

Q(.)

  Y

Q(   Y)

● Gradient is much more sensitive to quantization error.
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DNN Gradient Distribution

Chmiel, Brian, et al. "Neural gradients are near-lognormal: improved quantized and sparse training." arXiv preprint 
arXiv:2006.08173 (2020).

● DNN gradient is much hard to quantize and very sensitive to quantization error.
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Taxonomy of Quantization
● Quantization techniques can be classified from different perspectives

○ Weight quantization, activation quantization
○ Post training quantization, quantization aware training
○ Tensor-based quantization, vector-based quantization, group-based quantization
○ Quantization for inference/training
○ Deterministic quantization, stochastic quantization
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Deterministic and Stochastic Quantization

10

a = 0.2

● To quantize a, conventional linear quantization will make 
q(a) = 0. However, this will cause a bias. 

● With stochastic quantization:

● For quantization during the forward pass of DNN training, the bias will not cause any 
problem, due to the existence of bias in BN.

● Stochastic quantization is extremely useful when applying quantization to accelerate DNN 
training. 
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Deterministic and Stochastic Quantization

...

...

Filters

H

W

C

Input Feature 
maps

...
...

...
R

S

C

M filters

* ...

...

Quantized Filters

H

W

C

Input Feature 
maps

...
...

...

R
S

C

M filters

*

...

Output Feature 
maps

E

F

M

BN

β

FP weights Quantized weights
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Quantization During Training

  X

WT

  Y XT    W

Weight Gradient 
Computation

 Data Gradient 
Computation

S
Q

(.)

Q(   Y)

Q(WT)

SQ(.)

Q(XT)

  Y

Q(   Y)

S
Q

(.)

SQ(.)
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Learnable Quantization
● Multiple methods have been proposed to learn the quantization 

hyperparameters:
○ PACT
○ QIL
○ Quantization network
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Learnable Quantization
● How to convert a number to INT8 representation?

○ Set the clipping range: (-Lmin, Lmax), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the fixed-point representation:

○ Rescale:

1



53

Learnable Quantization

Weight distribution in ResNet
l = 0.9×max(|W|), l = 0.95×max(|W|)

L L

-m m

● How to convert a number to INT8 representation?
○ Set the clipping range: (-l, l), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the fixed-point representation:

○ Rescale:

Can learn by learnt during training?

s = (2l)/(2b-1)
xc = Clip(x, l, -l)

xint = round(xc/s)
xq = sxint
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Learnable Quantization

L L

-m m

● First we need to apply CLIP function to 
the input x, where the clip function has a 
range of (-l, l).

●

Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." arXiv preprint arXiv:1805.06085 
(2018).

● Can we learn l?
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Learnable Quantization

✖

Q W’W

A

Y ZReLU

l

clipW

l

Wc r(.) W’

1
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Learnable Quantization

L L

-m m

Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." arXiv preprint 
arXiv:1805.06085 (2018).

L can be 
learnable
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Learnable Quantization

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

QIL

Yang, Jiwei, et al. "Quantization networks." Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition. 2019.

QN
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 Quantization Interval Learning (QIL) 

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

L L

-m m

c-L c+L

-m m

0

w = 0.2

……
0.5 1
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 Quantization Interval Learning (QIL) 

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

0.50

w = 0.2

1

……
wq = Q(w)

● F(.) is a function which contains learnable 
hyperparameters.

● To achieve this rounding flexibility, we combine a 
learnable function with quantization.

wq = Q(F(w)) 



60

 Quantization Interval Learning (QIL) 
● QIL offers flexibility to round the FP weights.

0

w = 0.2

……

0

w = 0.2

……

 = 0.8

0

……

 = 0.8

Quantize

Mapping

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

● wq = Q(F(w)) are stored for inference after the training process finished. 
● We can not apply this techniques over the activation, due to its large computational overhead.

Mapping function contains some learnable parameters

0.5 1

0.5 1

0.5 1
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Quantization Networks
● We propose a novel perspective of interpreting and implementing neural network quantization by 

formulating low-bit quantization as a differentiable non-linear function.

Yang, Jiwei, et al. "Quantization networks." Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition. 2019.

● n + 1 is the number of quantization intervals
● β is the scale factor of inputs
● si and bi are the scales and biases for the unit step functions

Gong, Ruihao, et al. "Differentiable soft quantization: Bridging full-precision and low-bit neural networks." Proceedings of the 
IEEE/CVF international conference on computer vision. 2019.
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Quantization Networks

● We can replace the staircase 
function with a sigmoid function.

T = 1

T = 3T = 5T =10

T =50
● We can progressively increases T 

during the training process. 
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■ Quantization
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Post Training Quantization
● Several Methods have been proposed to efficient post-training 

quantization.

● Given the large size of the modern LLM, it is beneficial to applied the 
quantization on the model directly without the need of finetuning.
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Case Study: CLIP in Llava

P
rojection
N

etw
ork

✕24

S
elf-A

ttention

Feedforw
ard

N
etw

ork

CLIP

Embedding

Image

Text

Liu, Haotian, et al. "Visual instruction tuning." Advances in neural information processing systems 36 (2024).
S
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Concat in token dim
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CLIP Architecture

Self-Attention

Feedforward
Network

✕2
4

C
LI

P

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference 
on machine learning. PMLR, 2021.
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Types of Outlier
● Massive Activation:

○ For an activation matrix A, an massive activation is an element Aij within it 
that satisfies:

○ Aij > η✕mean(|A|)
○ Aij > γ
○ η=300, γ=50

● Channelwise Outlier:
○ mean(Ai) > η✕std(A) +mean(|A|)
○ std(Ai) < β
○ η=3, β=0.6
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Outlier Study: CLIP Activations
● 3D activation within layer 12

X1   X2   X3   X4   

X5   X8   X9   y1   

y2   y3   y4   y5   
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Outlier Study: CLIP Activations
● 3D plots of X2 across 

layers.

● x2 exhibits channel wise 
outlier

Layer 1   Layer 2   Layer 3   Layer 4   

Layer 11   Layer 12   Layer 13   Layer 14   

Layer 19   Layer 20   Layer 21  Layer 23  
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Outlier Study: CLIP Activations
Layer 1   Layer 2   Layer 3   Layer 4   

Layer 11   Layer 12   Layer 13   Layer 14   

Layer 19   Layer 20   Layer 21  Layer 23  

● 3D plots of x8 across 
layers.

● x8 exhibits channel wise 
outlier
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Outlier Study: CLIP Weights

● Wq across CLIP layers.
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Outlier Study: CLIP Weights

● Wk across CLIP layers.
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Outlier Study: CLIP Weights

● Wv across CLIP layers.
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Outlier Study: LLaMA Activations

Sun, Mingjie, et al. "Massive activations in large language models." arXiv preprint arXiv:2402.17762 (2024).

x1

x2
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Study the Reason of LLM Outliers
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Outlier Smoothing

LLM
Intermediate

LLM

Post-training 
Quantization

Outlier
Smoothing

Output
LLM

21

● When performing post-training quantization on a LLM, it's common to include a 
step of outlier smoothing prior to the quantization process. 
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QuaRot

Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." arXiv preprint arXiv:2404.00456 (2024).

● QuaRot introduces a novel methods to convert the weights and activation of LLM.
● After conversion, most of the outliers within the activation and weights are removed.
● This conversion introduces almost no additional cost during the inference.
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QuaRot
● Assume Y = AW, where A may have outliers, quantizing A and W as Q(A) and 

Q(W) could result in increased quantization error. Consequently, Q(A)Q(W) may 
differ significantly from AW.

● With QuaRot, a orthogonal matrix is applied to eliminate the outliers within A.

WA AW RTW AW

● RTW can be computed offline, AR can be generated by modifying the weight 
matrices of the last layer.

AR

Q(A) Q(A)Q(W) Q(AR)Q(W) Q(RTW) Q(AR)Q(RTW)

RTR=RRT=I

Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." arXiv preprint arXiv:2404.00456 (2024).
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QuaRot

● RTW can be computed offline, AR can be generated by modifying the weight 
matrices of the last layer.

Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." arXiv preprint arXiv:2404.00456 (2024).

AWARWlR RTWl+1

Layer l Layer l+1

AWAWl Wl+1

Layer l Layer l+1
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QuaRot

● For some of the layers, the conversion needs to be performed online
● We can use Hadamard matrix, which consists of only 1 and -1 to facilitate the 

matrix multiplications.

Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." arXiv preprint arXiv:2404.00456 (2024).
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SpinQuant

Liu, Zechun, et al. "SpinQuant--LLM quantization with learned rotations." arXiv preprint arXiv:2405.16406 (2024).

● SpinQuant optimizes (or learns) the rotation matrices to 
obtain the minimal changes on the training loss.

● We have to ensure the rotational matrix still satisfies the 
orthogonal property → Cayley Optimization.
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SmoothQuant

Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." 
International Conference on Machine Learning. PMLR, 2023.

● The intermediate results within LLM usually 
have a lot of outliers.

● SmoothQuant smooths the activation outliers 
by offline migrating the quantization difficulty 
from activations to weights with a 
mathematically equivalent transformation.

● s depends on the square root of the magnitude 
of the largest channel
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Activation-Aware Weight Quantization (AWQ)

Lin, Ji, et al. "AWQ: Activation-aware Weight Quantization for On-Device LLM Compression and Acceleration." Proceedings 
of Machine Learning and Systems 6 (2024): 87-100.

● AWQ improves the performance of 
smoothquant by making “s” learnable.
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Presentation
● Trained ternary quantization (Athul)
● Incremental network quantization: Towards lossless cnns with low-precision weights (Jay)
● Quantization and training of neural networks for efficient integer-arithmetic-only inference 

(Chahat)
● Smoothquant: Accurate and efficient post-training quantization for large language models 

(Naveenraj)
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