
Lecture 06: 
Distillation, Low Rank Decomposition 

and Neural Architecture Search
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Recap
● Basic Data Formats

○ Fixed point (INT)
○ Floating point (FP)
○ Block floating point (BFP)

● Quantization methods
○ Taxonomy of Quantization
○ Learnable adaptive quantization scheme
○ Quantization for LLM
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Topics
● Learnable adaptive quantization scheme
● Distillation
● Neural architecture search (NAS)
● Low-rank factorization
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Learnable Quantization

● Learnable clipping function: L
● Learnable rounding function: round(.)
● Learnable quantization function: Q(.)

● How to convert a number x to INT representation?
○ Set the clipping range: (-L, L), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the INT representation:
○ Rescale: 
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Learnable Quantization
● Various approaches have been suggested for learning the quantization 

hyperparameters:
○ PACT: learnable clipping range
○ QIL: learnable rounding function
○ QN: learning quantization step

● Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." arXiv preprint 
arXiv:1805.06085 (2018).

● Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." 
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

● Yang, Jiwei, et al. "Quantization networks." Proceedings of the IEEE/CVF conference on computer vision and 
pattern recognition. 2019.

● Gong, Ruihao, et al. "Differentiable soft quantization: Bridging full-precision and low-bit neural networks." 
Proceedings of the IEEE/CVF international conference on computer vision. 2019.
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Learnable Quantization (PACT) 

Weight distribution in ResNet
l = 0.9×max(|W|), l = 0.95×max(|W|)

L L

-m m

● How to convert a number to INT8 representation?
○ Set the clipping range: (-l, l), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the fixed-point representation:

○ Rescale:

Can learn by learnt during training?

s = (2l)/(2b-1)
xc = Clip(x, l, -l)

xint = round(xc/s)
xq = sxint

Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." arXiv preprint arXiv:1805.06085 
(2018).
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Learnable Quantization (PACT)

L L

-m m

● First we need to apply CLIP function to 
the input x, where the clip function has a 
range of (-l, l).

●

Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." arXiv preprint arXiv:1805.06085 
(2018).

● Can we learn l?
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Learnable Quantization (PACT)

✖
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Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." arXiv preprint arXiv:1805.06085 
(2018).
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Learnable Quantization (PACT)

L L

-m m

Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." arXiv preprint 
arXiv:1805.06085 (2018).

L can be 
learnable
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 Quantization Interval Learning (QIL) 

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
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 Quantization Interval Learning (QIL) 

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

0.50

w = 0.2

1

……
wq = Q(w)

● F(.) is a function which contains learnable 
hyperparameters.

● To achieve this rounding flexibility, we combine a 
learnable function with quantization.

wq = Q(F(w)) 
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 Quantization Interval Learning (QIL) 
● QIL offers flexibility to round the FP weights.

0

w = 0.2

…… ……

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

● wq = Q(F(w)) are stored for inference after the training process finished. 
● We can not apply this techniques over the activation, due to its large computational overhead.

Mapping function contains some learnable parameters

0.5 1
0

w = 0.2  = 0.8

0

……

 = 0.8

Quantize

Mapping
0.5 1
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Quantization Networks (QN)
● We propose a novel perspective of interpreting and implementing neural network quantization by 

formulating low-bit quantization as a differentiable non-linear function.

Yang, Jiwei, et al. "Quantization networks." Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition. 2019.

● n + 1 is the number of quantization intervals
● β is the scale factor of inputs
● si and bi are the scales and biases for the unit step functions

Gong, Ruihao, et al. "Differentiable soft quantization: Bridging full-precision and low-bit neural networks." Proceedings of the 
IEEE/CVF international conference on computer vision. 2019.
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Quantization Networks (QN)

● We can replace the staircase 
function with a sigmoid function.

T = 1

T = 3T = 5T =10

T =50
● We progressively increases T 

during the training process. 
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Topics
● Learnable adaptive quantization scheme
● Distillation
● Neural architecture search (NAS)
● Low-rank factorization
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Knowledge Distillation Basics
● Transferring knowledge from a large and complex model or set of models to a 

single, smaller model that can be effectively deployed in real-world scenarios 
with practical limitations.

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv preprint 
arXiv:1503.02531 (2015).
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Knowledge Distillation Basics
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● In image classification task, the soft labels indicate the 
probability of the input belong to a specific class.

● The teacher DNN is usually a pretrained model, which has a 
much larger size than the student model.

● The student model is smaller than the teacher model and does 
not need to have the same architecture as the teacher.
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Response-Based Knowledge Distillation

Training
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Soft labels ● During the training 
process, only the 
weights within the 
student model got 
updated.

● The teacher model 
can be either 
pretrained or trained 
together with student.

● c tends to be close to 
1: ~0.9.

Hard labels

c
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KL Divergence

● In mathematical statistics, the Kullback–Leibler (KL) divergence, denoted DKL(P∥Q), is 
a measure of how much a model probability distribution Q is different from a true 
probability distribution P.

● If P(x) = Q(x) for all x, then the KL divergence equals 0.
● Otherwise, KL divergence is greater than 0.
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Response-Based Knowledge Distillation

● The soft labels are computed as follows:

● Kullback Leibler (KL) divergence is usually used to generate the distillation loss.

● The loss function of the student model includes both distillation loss and the conventional 
cross-entropy loss.

T is the temperature
zi is called logits
p is the soft label
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How Smart the Teacher Need to Be?

Cho, Jang Hyun, and Bharath Hariharan. "On the efficacy of knowledge distillation." Proceedings of the IEEE/CVF 
international conference on computer vision. 2019.

● Larger teachers, though they are more accurate by themselves, do not 
necessarily make for better teachers. A too large teacher model can even 
harm the performance of the student.

● As the teacher grows in capacity and accuracy, the student often finds it 
difficult to emulate the teacher.
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How Smart the Teacher Need to Be?

● Increasing teacher capacity (depth: left, width: right) and thus accuracy does not necessarily 
increase the accuracy of the student network.

● If the teacher network is too large, the student is unable to find a solution in its space that 
corresponds well to the largest teacher.

Cho, Jang Hyun, and Bharath Hariharan. "On the efficacy of knowledge distillation." Proceedings of the IEEE/CVF 
international conference on computer vision. 2019.
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How Smart the Teacher Need to Be?

● We may perform grid-search to find the optimal teacher network architecture, but that is too 
expensive. 

● In particular, we propose to early stop (ES) the training process.

Cho, Jang Hyun, and Bharath Hariharan. "On the efficacy of knowledge distillation." Proceedings of the IEEE/CVF 
international conference on computer vision. 2019.
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Improved Knowledge Distillation via Teacher 
Assistant

Mirzadeh, Seyed Iman, et al. "Improved knowledge distillation via teacher assistant." Proceedings of the AAAI conference 
on artificial intelligence. Vol. 34. No. 04. 2020.

● Knowledge distillation is not always effective, 
especially when the gap (in size) between 
teacher and student is large.

● TA models are distilled from the
teacher, and the student is then only distilled 
from the TAs
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Improved Knowledge Distillation via Teacher 
Assistant

Mirzadeh, Seyed Iman, et al. "Improved knowledge distillation via teacher assistant." Proceedings of the AAAI conference 
on artificial intelligence. Vol. 34. No. 04. 2020.

● In this paper, the authors 
propose to use intermediate-size 
networks to fill in the gap 
between them.

● First, the TA network is distilled 
from the teacher. Then, the TA 
plays the role of a teacher and 
trains the student via distillation.
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Feature-Based Knowledge Distillation

● Response-based knowledge usually relies on the output of the last layer, 
e.g., soft targets, and thus fails to address the intermediate-level supervision 
from the teacher model.

● Both the output of the last layer and the output of intermediate layers, i.e., 
feature maps, can be used as the knowledge to supervise the training of the 
student model.

Srivastava, Rupesh K., Klaus Greff, and Jürgen Schmidhuber. "Training very deep networks." Advances in neural 
information processing systems 28 (2015).
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Feature-Based Knowledge Distillation
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● For feature based Knowledge, distillation, the intermediate results from the 
teacher model is extracted and guide the training for the student DNN.
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FitNets: Hints for Thin Deep Nets

HINT-BASED TRAINING

Romero, Adriana, et al. "Fitnets: Hints for thin deep nets." arXiv preprint arXiv:1412.6550 (2014).
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FitNets: Hints for Thin Deep Nets
HINT-BASED TRAINING

Romero, Adriana, et al. "Fitnets: Hints for thin deep nets." arXiv preprint arXiv:1412.6550 (2014).

Whintx

Wguided

r l2 distance
hint

● r(.) consists of conv layers, in order to 
produce the outputs with the same 
dimension as the teacher DNN.Whint

1 2
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Distillation Schemes: Online Distillation

Zhang, Ying, et al. "Deep mutual learning." Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2018.

● An ensemble of students learn collaboratively and teach each other throughout 
the training process

● A similar method can be extended to a larger group of students.
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Distillation Schemes: Online Distillation

Zhang, Ying, et al. "Deep mutual learning." Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2018.
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Distillation Schemes: Online Distillation

● The same concept can be 
applied to situations involving 
multiple students.

● A cohort of students to learn 
mutually.
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Self Distillation

Zhang, Linfeng, et al. "Be your own teacher: Improve the performance of convolutional neural networks via self 
distillation." Proceedings of the IEEE/CVF international conference on computer vision. 2019.

● The networks are firstly divided into several components, and the knowledge from the deeper 
parts is condensed into the shallower ones.

Training
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Relation between Student and Teacher
● The student model should have some architectural similarities with 

the teacher.
○ It can be a mini version of teacher model (shallower, thinner)
○ It can be a pruned version of teacher
○ It can be a quantized version of teacher
○ It can be a subset of teacher
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Multi-teacher Distillation
● We present a method to train a 

student network by incorporating 
multiple teacher networks not 
only in output layer by averaging 
the softened outputs (dark 
knowledge) from different 
networks, but also in the 
intermediate layers by imposing 
a constraint about the 
dissimilarity among examples.
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Multi-teacher Distillation

You, Shan, et al. "Learning from multiple teacher networks." Proceedings of the 23rd ACM SIGKDD international 
conference on knowledge discovery and data mining. 2017.

● Multiple teacher can 
better guide the student 
DNN to learn.

● Each teacher network 
can with different 
architecture, or even 
same architecture but 
different weights.
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Cross-Modal Distillation
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● If the labeled data on the new tasks is limited (e.g., segmentation), we can pass the 
unlabelled data to the teacher model pretrained for another similar task (e.g., 
classification), and use the feature-based knowledge distillation to better guide the 
student.

● The teacher network, despite being trained on different vision tasks, still demonstrates 
strong proficiency in understanding visual inputs.
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Model
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Distillation for Language Models

LLMUnLabelled
Training
dataset

Student 
Model

D
istillation 

loss

● Given the unlabelled data, LLM can leverage its 
knowledge to provide:

○ ground-truth label 
○ Features (rationale)

● Distilling step-by-step is a new simple 
mechanism for training smaller models with less 
training data. 

● This mechanism reduces the amount of training 
data required for both finetuning and distillation 
of LLMs into smaller model sizes. 

Hsieh, Cheng-Yu, et al. "Distilling step-by-step! outperforming larger language models with less training data and 
smaller model sizes." arXiv preprint arXiv:2305.02301 (2023).
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Distilling Step-by Step

● First, given an LLM and an unlabeled dataset, we prompt the LLM to 
generate output labels along with rationales to justify the labels
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Distilling Step-by Step

● Second, we leverage these rationales in addition to the task labels to train 
smaller downstream models.
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Chain-of-Thought (CoT)

Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language models." Advances in neural 
information processing systems 35 (2022): 24824-24837.

● CoT allows models to 
decompose multi-step 
problems into intermediate 
steps, which means that 
additional computation can 
be allocated to problems 
that require more 
reasoning steps.
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Distilling Step-by Step
● We use few-shot Chain-of-thought 

prompting that contains both an example 
rationale (highlighted in green) and a label 
(highlighted in blue) to elicit rationales from 
an LLM on new input examples.

● We first design a prompt template p that 
articulates how the task should be solved.

● The rationale generation loss enables the 
model to learn to generate the 
intermediate reasoning steps for the 
prediction, and could therefore guide the 
model in better predicting the resultant 
label.
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Topics
● Learnable adaptive quantization scheme
● Distillation
● Neural architecture search (NAS)
● Low-rank factorization
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Neural Architecture Search (NAS)

● How can a DNN be designed with an optimal architecture to maximize accuracy on the test dataset?
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Neural Architecture Search (NAS)
● Neural Architecture Search (NAS) is an automated process for designing neural 

network architectures.
● Traditional methods of creating neural networks rely heavily on human expertise and 

manual experimentation, which can be time-consuming and suboptimal.
● NAS aims to alleviate these challenges by using algorithms to explore the vast space 

of possible network architectures to find the most efficient and effective designs for 
specific tasks.
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Deep Reinforcement Learning

Agent

Action

State State

Reward

Agent

● Reinforcement learning is an area of machine learning where an agent learns to make 
decisions by performing actions in an environment to maximize some cumulative reward.
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Deep Reinforcement Learning

● Agent: player
● State: game image
● Action: one button in gamepad
● Environment: game software
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Learning Transferable Architectures for Scalable 
Image Recognition 

● We use a recurrent network to generate 
the model descriptions of neural networks 
and train this RNN with reinforcement 
learning to maximize the expected 
accuracy of the generated architectures 
on a validation set.

Zoph, Barret, and Quoc V. Le. "Neural architecture search with reinforcement learning." arXiv preprint arXiv:1611.01578 
(2016).
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Learning Transferable Architectures for Scalable 
Image Recognition 

● Reward is based on the 
accuracy on the 
validation dataset.

● The action of the current 
step is based on the all 
the previous history on 
action is has taken.

Zoph, Barret, and Quoc V. Le. "Neural architecture search with reinforcement learning." arXiv preprint arXiv:1611.01578 
(2016).
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Learning Transferable Architectures for Scalable 
Image Recognition
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DARTS: Differentiable Architecture Search 

Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "Darts: Differentiable architecture search." arXiv preprint 
arXiv:1806.09055 (2018).

● DARTs continuous relax of the search space by placing a mixture of candidate operations on 
each edge, and combines the outputs from each branch using softmax. 
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DARTS: Differentiable Architecture Search 
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y1= Conv(x, w1)w
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y
y2= Conv(x, w2)
y3= Conv(x, w3)

y= s1y1+s2y2+s3y3 

● At the end of search, we simply select the conv layer with the 
highest s.

● We can also add additional regularization term to push s to be 
one-hot.
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Once-For-All: Train One Network And Specialize It 
for Efficient Deployment

Cai, Han, et al. "Once-for-all: Train one network and specialize it for efficient deployment." arXiv preprint arXiv:1908.09791 
(2019).

● A supernet is train which contained 
multiple smaller subnetworks.

● All the subnetworks are trained 
jointly.
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Once-For-All: Train One Network And Specialize It 
for Efficient Deployment

● During the forward pass, a subnetwork is 
sampled.

● All the weight within the subnetwork is trained in 
this iteration.

● All the subnetworks are nested within the OFA.
● A DNN is trained to search for the subnetwork.

○ Takes the hardware performance as input.
○ Return the corresponding subnetwork that 

satisfies the criteria.
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Once-For-All: Train One Network And Specialize It 
for Efficient Deployment

● The once-for-all network comprises many sub-networks of different sizes where small 
sub-networks are nested in large sub-networks.

● After OFA is trained, we build neural-network-twins to predict the latency and accuracy given 
a neural network architecture.

● We randomly sample 16K sub-networks with different architectures and input image sizes, 
then measure their accuracy on 10K validation images sampled from the original training set.

Search 
DNN

DNN 
architecture

Accuracy
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Once-For-All: Train One Network And Specialize It 
for Efficient Deployment

Cai, Han, et al. "Once-for-all: Train one network and specialize it for efficient deployment." arXiv preprint 
arXiv:1908.09791 (2019).
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ProxylessNAS

Cai, Han, Ligeng Zhu, and Song Han. "Proxylessnas: Direct neural architecture search on target task and hardware." 
arXiv preprint arXiv:1812.00332 (2018).
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ProxylessNAS



59

Presentations
● Learning from multiple teacher networks (Siddhant)
● Chain-of-thought prompting elicits reasoning in large language models (Rutuja)
● MnasNet: Platform-Aware Neural Architecture Search for Mobile (Shawn)
● FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural 

Architecture Search (Monish)

https://docs.google.com/presentation/d/1_orzQSk2RT6I1jrBlqoIJA4UB8wydD7-/edit#slide=id.p1
https://docs.google.com/presentation/d/1B18anhrYf79zCeGyP_bcGXHPCgpKdP28k2SHDzLyk3I/edit?usp=sharing
https://docs.google.com/presentation/d/19M45ePbJhSum4cP5P0Oq9d26c91wmiHXmMohkPXsvO4/edit?usp=sharing
https://docs.google.com/presentation/d/1WcGtsrat7B9lMfyUpzS7eubB-t25zONZHitnXSd79ns/edit
https://docs.google.com/presentation/d/1WcGtsrat7B9lMfyUpzS7eubB-t25zONZHitnXSd79ns/edit
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Topics
● Learnable adaptive quantization scheme
● Distillation
● Neural architecture search (NAS)
● Low-rank factorization
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Low Rank Optimization for DNN Efficiency
● Weight tensors can be decomposed into: 

n

m W = m

r

r
r n

r✖

= m

r
n

r

● We can train the W1 and W2 in the DNN instead of W.
● Less storage is required.

r < m and n✖

✖W1 W2
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Singular Value Decomposition
n

m W = m

r

r
r n

r

r
● W: Input matrix 

○ m✖n matrix
● U: Left singular vectors

○ m✖r matrix
● R: Singular value matrix

○ r✖r diagonal matrix, r is the rank of W
● V: Right singular vectors

○ n✖r matrix

U VTR

Before: mn
After: mr + rn

✖ ✖
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Conv2d with Low-rank Weight Filter
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Conv2d with Low-rank Weight Filter
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Other Types of Decomposition 
Methods

Lebedev, Vadim, et al. "Speeding-up convolutional neural networks using fine-tuned cp-decomposition." arXiv preprint 
arXiv:1412.6553 (2014).

● CP decomposition
○ Lebedev, Vadim, et al. "Speeding-up convolutional neural networks using 

fine-tuned cp-decomposition." arXiv preprint arXiv:1412.6553 (2014).
● Tucker decomposition

○ Kim, Yong-Deok, et al. "Compression of deep convolutional neural networks for 
fast and low power mobile applications." arXiv preprint arXiv:1511.06530 
(2015).

● Each method has its own tradeoff between computational 
efficiency and Accuracy.
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Code Demo

https://colab.research.google.com/drive/1GnKFVRRchz8F2qGxhrUWQxCTeCheH6O0?usp=sharing


