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1 Overview and Research Vision

In the recent years, we have seen a proliferation of sophisticated Deep Neural Network (DNN) architectures
that have achieved state-of-the-art performances across a variety of domains [7, 27, 31]. However, the
algorithmic superiority of DNNs comes at extremely high computation and memory costs, which pose significant
challenges to the hardware platforms executing them. In recent past, GPUs represented the cutting edge of
DNN hardware. However, the ever-increasing complexity of DNNs has led to a quest for the next wave of
improvement in DNN processing efficiency, which further expedites the development for the customized Al
hardware accelerator (e.g., Google’s Tensor Processor Unit [10]).

Building a highly efficient Al accelerating system is extremely difficult, as traditional DNN architectures are
designed solely for the purpose of accuracy maximization without considering their hardware implementation
cost. In contrast, we should adopt a methodology of hardware and DNN algorithm co-design, given the fact
that the DNN architectures and the hardware platform executing them are tightly coupled and tangled, a
slight modification on one of them may significantly impact the other. With this methodology in mind, my PhD
research has been focused on the boundary between deep learning and hardware system design. Specifically, I
developed efficient DNN architectures and algorithms that achieve superior hardware performance than prior
work while maintaining near a state-of-the-art accuracy performance. Additionally, I designed the hardware
circuits that take advantage of the architectural properties of the proposed DNNs to enable optimal energy
efficiency and latency on the hardware platform (e.g., FPGA). Unlike most of the previous literature that
proposes efficient DNN solutions without (or with limited) hardware evaluation, my work [36, 15, 14, 25, 35,
38, 37] includes a full-stack approach with a detailed hardware design and evaluation. I believe developing
such co-design techniques is of paramount importance in the sense that it can serve as a bridge between the
research communities of Al and the hardware system. The overarching goal of my research is to develop
efficient software algorithms and supporting hardware architectures by exploring the novel computing
paradigms for the compute-intensive applications (e.g., machine learning).

A complex scientific research problem often involves multiple fields of study. Cross-disciplinary study enables
the researchers to broaden their research horizons, and it encourages the researchers to confront questions that
traditional disciplines do not ask while opening up
new areas of research. Recently, deep Reinforcement ( acceerating )
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2. reinforcement learning and its application (blue Figure 1: A summary of my PhD works. My first-author
blocks in Figure 1). 3. the intersection between the (or co-first author) publications are highlighted in bold.
above two fields (magenta block in Figure 1).

The broader impacts of my work reach both academia and industry. Nine of my first-authored (or first co-
authored) papers have been published at top tier architecture, machine learning or system venues (ASPLOSx 2,
NeurIPSx2, HPCA, SC, AAAI, ICPP, ICS). One of my first-authored paper has won the best paper award at
IEEE International Conference in Communication (ICC). At Meta reality lab, I lead our ongoing collaborations
with other industrial partners including TSMC and SK Hynix. During my doctoral study at Harvard, I have
done multiple internships at Microsoft Research, Mediatek and Intel Labs. My works during my internships
have resulted in two academic publications and one U.S. patent.

The rest of the statement will provide a detail of my research contributions in algorithm and hardware
co-design (Section 2) and multi-agent reinforcement learning (Section 3). Finally, I will lay out plans for my
future research (Section 4).

IFor [14, 18, 19, 16], the first three authors contribute equally to the paper, proof with signatures from the authors can be provided
upon request.



2 Algorithm and Hardware Co-design for Efficient DNN Deployment

To co-design DNN with hardware for a better efficiency, I have worked on developing innovative DNN
pruning (removing superfluous parameters from DNNs) [37, 14, 25, 17] and quantization algorithms [36, 35,
15, 20, 24] (converting the high-precision DNN parameters into low-precision parameters). A common theme
in these works is the usage of group-based methods that divide the matrix-matrix multiplication between a
weight and data matrix into partial dot products. By limiting the computational cost on the dot products, it
enables a tighter processing bound on the processing elements and further saves the overall processing latency
and energy consumption. In addition to quantization and pruning, I also design novel DNN architectures and
their supporting hardware for efficient DNN inference and training [33, 38, 18, 19].

2.1 Fine-grained Structured Pruning for Efficient Systolic Array Implementation [14,
25, 371

For certain applications, it has been shown that DNN weight

matrices can be sparse, e.g., with up to 90% of elements in the Sparse Filter Matrix
matrix being zero, while not significantly impacting the classi- 32 64
fication accuracy of the network [6]. Theoretically, such sparse [ =i~ ¥4
matrices should lead to a significant reduction in inference com-
putation, with a corresponding improvement in energy efficiency,
as multiplication with zero weights can be skipped. However,
in practice, the irregular positions of the nonzero weights make
efficient hardware implementations difficult as they typically
rely on a regular layout of processing elements. Based on this,
I developed column combining [14], which packs sparse filter
matrices into a denser format for efficient deployment in a novel
systolic architecture. Column combining modifies conventional
weight pruning by adding constraints across neighboring weight
matrix columns. These constraints allow for a dense systolic
layout to support sparse matrix multiplication and leads to sig-
nificant improvement in energy efficiency (e.g., up to 8x) over conventional systolic arrays for sparse DNNs
(Figure 2). Recently, column combining has been implemented by Nvidia in their A100 Tensor Core GPU [1],
which supports a fine-grained structured sparsity by packing every four consecutive weight matrix columns
into two dense columns. I further extended the insight of column combining to support CNNs trained with
power-of-two weights, where each weight is a single power-of-two term (e.g., 2%) [25]. My recent work [37]
has also applied this column combining methodology on both weight and input activations, and it demon-
strates significantly hardware savings across a variety of DNN models and datasets while achieving the optimal
accuracy performance.
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Figure 2: Column combining packs the 94
columns of a sparse matrix into 17 columns.

2.2 Group-based Quantization Scheme for Efficient DNN Operation [15, 36]

Term Quantization for Efficient DNN Inference [15].
The tolerance of deep learning models to small quantities
of noise has led to a growing interest in designing various
quantization approaches, which is proven to be effective

8-bit uniform
quantization

Term quantization
(TQ)

in reducing the implementation cost of DNN Inference.
Most of the previous works utilize the uniform quantiza-
tion scheme for computing efficiency. However, uniform
quantization can not precisely capture the bell-shaped dis-
tribution of weights and activations, further resulting in
a larger quantization error and severe accuracy degenera-
tion. To mitigate this issue, I propose a novel quantization
technique called term quantization (TQ) [15]. Unlike con-
ventional quantization that operates on individual values,
TQ is a group-based method that keeps a fixed number of
largest terms (nonzero bits in the binary representations)
within a group of values (Figure 3). By exploiting normal-
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Figure 3: A 32-bit floating point weight matrix
(left) is first quantized using uniform quantization
with high precision (e.g., 8-bits). The resulting
matrix (middle) are then further quantized via
Term Quantization (right).

like weight and data distributions typically present in DNNs, TQ can achieve significantly smaller amount of
quantization error over 8-bit uniform quantization while using only less than two terms (i.e., bits) to represent
each weight and data value, which further allows for a great accuracy improvement over the conventional
uniform quantization approach. With the real FPGA implementation, we demonstrated that term quantization
can achieve 2 — 6x better hardware efficiency over uniform quantization on multiple DNN models, and in the
meanwhile achieving superior accuracy performance.



Multi-resolution DNN Inference with Term Quantization [36]. In general, there is an inherent trade-off
between the classification accuracy and the precision of a DNN under a fixed quantization regime. Because
of this trade-off, the DNN models are usually quantized under multiple resolutions (e.g., from 8-bit to 4-
bit fixed-point bit-widths) to achieve varying degrees of performance/cost trade-off for practical hardware
deployment. Given the superior performance of TQ described in [15], I proposed a novel multi-resolution term
quantization scheme that efficiently supports quantization at multiple precisions at runtime [36]. Additionally,
to support the term-based multi-resolution inference, I further developed a multi-resolution DNN training
algorithm that jointly optimizes many sub-models across a wide range of resolutions. This multi-resolution
DNN training algorithm will produce a multi-resolution model that can operate under different resolutions
with an optimal accuracy performance. Based on the target hardware cost on executing DNN, the multi-
resolution model can dynamically adjusting its resolution by simply changing the number of power-of-two
terms on the weight and activation values, leading to an efficient performance/cost trade-off to suit the current
hardware performance requirement. To implement the proposed term-quantized DNN, I further propose a
novel multi-resolution Multiplier-Accumulator (mMAC) design that executes the value-level multiplication
with term-based processing. Using real hardware implementations, I show that the mMAC design broadens
the choices in trading off cost, efficiency, and latency across a wide range of computational budgets.

2.3 Efficient DNN Training Under Variable Precision Block Floating Point [35, 38]

While quantization has been shown to provide tremendous savings on hardware implementation costs for
DNN inference, it can also be utilized to facilitate the DNN training process. Compared with the inference
operations, DNN training requires extra computations to produce activation gradients and weight gradients,
making the computing workload far exceed the inference. To mitigate the computing overhead of DNN
training, I choose Block Floating-Point (BFP). Compared with floating-point and fix-point quantization schemes,
BFP obtains a much wider dynamic range than fixed-point representation, while achieving a much lower
implementation cost than floating-point representation. I further propose a Fast First, Accurate Second
Training (FAST) system for DNNs, where the weights, activations, and gradients are all represented in BFP.
FAST supports matrix multiplications with variable precision input operands, enabling incremental growth in
DNN precision over the course of training. By using fast low-precision BFP in the early phase of the training,
FAST can greatly shorten the training time while reducing the overall hardware resource usage. To implement
FAST, I have designed a supporting hardware system with FAST multiplier-accumulator (fMAC) that operates
on 3-bit chunks of mantissas across two groups of BFP numbers being multiplied. Additionally, in my recent
work [38], I design a on-device training accelerator that uses eDRAM as the main on-chip memory and
completely eliminates the need for off-chip communication. It has been proven that BFP quantization can also
be applied to benefit the training implementation for the reversible DNN [5].

3 Multi-Agent Reinforcement Learning and Its Application

Many real-world applications (e.g. hardware chip placement, robotics control, autonomous driving) involve
the participation of more than one single agent/player, and they can be modeled systematically as Multi-
Agent Reinforcement Learning (MARL) problems. Specifically, cooperative MARL addresses the sequential
decision-making problems of multiple autonomous agents that operate in a common environment, each of
the agents aims to optimize a common goal by selecting the optimal action. To deploy MARL algorithm for
practical usages, one of the major challenges is caused by the massive communication overhead among the
MARL agents during the execution. To mitigate this problem, I have developed VBC [40] and TMC [41], which
allow the MARL agents to operate under a minimum level of communication with a high level of robustness.
Given the superior performance offered by VBC and TMC, I further adopt them to solve the practical problems
including dynamic on-chip network reconfiguration [39] and client selection in Federated Learning [34].

3.1 Efficient Communication for Multi-agent Reinforcement Learning [40, 41]

In cooperative MARL, multiple agents interact with each other in a shared environment. Each agent only
has access to the partial observations of the environment, and needs to make local decisions based on the
partial observations to achieve the maximum team reward. Recent works [28, 4, 9] have demonstrated
that introducing communications among the agents during execution can greatly improve the overall team
performance. However, existing communication schemes often require agents to exchange an excessive
number of messages, which results in a massive communication overhead and hinders its practicality in
many real-world implementations. To mitigate this problem, I propose Variance Based Control (VBC) [40].
Under VBC, each agent first makes a preliminary decision based on its local information, and initiates the
communication only when its confidence level on this preliminary decision is low. The confidence level is
measured using the difference between the top two largest Q-values of the actions. Similarly, upon receiving
the communication request, the agent replies to the request only when its message is informative. Our
evaluation using a challenging set of StarCraft II benchmarks indicates that our method achieves 2 — 10x



lower in communication overhead than the state-of-the-art MARL algorithms, while allowing the agents to
better collaborate by developing sophisticated strategies. Based on VBC, I further develop Temporal Message
Control (TMC) [41], a simple yet effective approach for achieving succinct and robust communications in
MARL. TMC allows the MARL agents to perform well under a highly lossy communication environment, while
incurring an even lower communication overhead.

3.2 MARL applications [39, 34]

With the superior performances offered by VBC and TMC, I have applied them to facilitate the hardware
system design. Specifically, my recent work has adopted VBC to dynamically reconfigure the on-chip network
for the multi-core system, so that the resulting network topology can be customized for the applications that
are currently being executed [39], further leading to a lower processing latency and power. I have also adopted
VBC and TMC to perform run-time client selection for efficient Federated Learning (FL) implementations [34].
FL is a novel training paradigm that enables client devices to jointly learn a shared model by aggregating
locally-computed models without exposing their raw data. We have shown that VBC can be utilized for client
selection with optimal model accuracy, processing latency and communication efficiency.

4 Future Research

In their 2017 Turing Award lecture, Hennessy and Patterson dubbed this era as a ”A New Golden Age for
Computer Architecture” due in large part to the recent success of deep learning [8]. The high computational
costs and noise tolerance of deep learning encourages fundamental changes to many aspects of the hardware
architecture. On the other hand, the growing popularity of the DNN applications on resource-limited devices
(e.g., wearable devices in AR/VR) will force the future DNN architectures to better suit the underlying
hardware. Motivated by this perspective, I am excited to collaborate with researchers in the area of ML,
architecture, VLSI, system, circuits, as well as engineers at technology companies, like Meta, Microsoft, and
Intel to generate new ideas, tools, and methodologies for improving the energy efficiency and reliability of the
next-generation DNN computing platform. Below I outline several directions that I am excited to pursue.

4.1 Hardware for Machine Learning

The tolerance of deep learning models to small quantities of noise has led to renewed interests in approxi-
mate computing paradigms. Generally, these approaches introduce some levels of noise in the computation for
a significant increase in computational efficiency. I am interested in a full-stack approach that takes a unified
view of approximate computing across all the algorithm
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TVM [2]) to realize the maximum degree of efficiency, Figure 4: Overview of future work plan.

flexibility and generalizability across the full stack.

Recently, there is a growing demand on training DNN locally within the edge devices. For example, Federated
Learning (FL) requires an on-device DNN training with local user data, which enables users to adapt the DNN
model to their personal data and continuously improve their accuracy based on users’ preference. Seeing this,
I would like to explore the possibility of co-designing the DNN training algorithm, the training compiler, and
the hardware architecture for efficient training processes. For example, applying term quantization to lower
the implementation cost for training the attention-based models.

4.2 Machine Learning for Hardware

Multiple works have demonstrated the effectiveness of the Al algorithms on facilitating the hardware design.
For example, a recent work by Google [26] posed chip floorplanning as a reinforcement learning problem, and
relied on RL policy to optimize the quality of chip placements. They showed that the RL-based algorithm can



greatly outperform the current state-of-the-arts solution while obtaining significantly shorter design latency
than the traditional EDA tools. The resulting floorplan solutions generated by the RL have been adopted in the
product tape-out of a recent-generation Google tensor processing unit (TPU) accelerator. Other works have
also demonstrated the effectiveness of RL on transistor sizing in VLSI [32], memory mapping of the data [13]
and power management in multi-core system [11]. My computer architecture knowledge and my RL expertise
make me well-suited to explore in this direction.

4.3 DNN and Hardware Co-Design for Event-based Vision

Event cameras are bio-inspired sensors that differ from a conventional frame cameras: Instead of capturing
images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of
events that encode the time, location and sign of the brightness changes. Compared with the traditional
cameras that capture the RGB images, event cameras offer higher temporal resolutions and dynamic ranges.
However, the time-series nature of event-based camera inputs makes it difficult to be processed with the
conventional DNN solutions of vision tasks (e.g., convolutional neural network, vision transformer). I will
collaborate with the research teams from Meta Reality Lab to develop the novel DNN architectures as well
as the supporting hardware platform for efficient event-based vision processing. The growing popularity on
event-based vision will fundamentally shape the field of the DNN for vision tasks in the near future.

4.4 Practical Implementation of Multi-agent Reinforcement Learning

Although my previous research shows that it is possible for the MARL agents to achieve the same level
of performance with much lower communication overhead, it has not yet delivered a complete solution to
fully realize the MARL system in practice. Given the varying processing speeds and network conditions of
the agents during the operation, one of the most important open problems in MARL is how to handle the
straggler agents during the practical execution. The straggler MARL agents will severely degrade the overall
system performance by keeping the fast agents waiting for the messages from them. To build an efficient
MARL system, we will need to design an intelligent algorithm to detect and eliminate the messages from the
straggler agents at runtime while maintaining a good team reward.
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